m Networked Systems

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Towards a new framework for integration
of network planes

Semester Thesis
Author: Siddhant Ray

Tutor: Edgar Costa Molero

Supervisor: Prof. Dr. Laurent Vanbever

March 2021 to Jun 2021

Abstract

We present a new integration system for layer-3 routers in programmable networks, which
allows for the creation of a new forwarding node. These nodes retain the traditional routing
control plane from layer-3 routers. However, we replace the static data plane of the original routers
by a new, programmable data plane. We create networks using these new forwarding nodes,
replacing erstwhile layer-3 routers. These new nodes allow for the creation of smarter data planes
and customized control planes to implement traditional routing algorithms. We then use our
new forwarding nodes, combining route calculations from the control plane and smart forwarding
using our programmable data plane, in order to create better network wide routing and tra c
management. All in all, we now bene t from the best of each world, as we co-design the control
and data planes.

Contents

6

Introduction
1.1 Taskandgoals e
1.2 OVEIVIEW e e e e e

Background

2.1 Background e e e e e
2.1.1 The P4 Language and Programmable Switch Architecture
2.1.2 Mininetand p4-utils e
2.1.3 FRRouting(FRR) Suite

2.2 Related Work

Design

3.1 Network Super-Node Design

3.2 Network Topology Setup and Design,

3.3 Control Plane and Data Plane Co-Design
3.3.1 Generating Routing Messages i e
3.3.2 P4 DataPlane Design e e
3.3.3 FPM and P4 Switch Controller

Working on Di erent Use-Cases
4.1 Testing on Multi-Path Topologies
4.2 BGP and Multiple Autonomous System Topologies

Outlook
5.1 Isusing FRR as a control planegood?
52 Future Work e

Summary

References

Chapter 1

Introduction

Computer networks have traditionally used Layer-3 routers to forward IP tra c using several

IP forwarding protocols such as Open Shortest Path First (OSPF), Routing Information Proto-
col(RIP), Border Gateway Protocol(BGP) and such others. We use the term Layer-3 to mean the
standard Layer-3 of the network OSI model, which speci cally deals with routing and forwarding
for IP packets. Several recent advancements have also shown new protocols such as Multi-Protocol
Label Switching(MPLS), which can be used to forward IP packets without relying on IP routing
structures. However, in this project, we revisit the concept of IP routing and endeavour to create
an improved system for IP routing, by distributing the control plane and data plane of the routers
into separate entities, which can yield faster and scalable performance over traditional IP routing.

For a long time all routers have been engineered with a control plane , which acts as the \brain"
of the router, computes the routing behaviour for all IP pre xes it needs to route to, and a data
plane, which describes the forwarding behaviour of the packet, in terms of setting the next hop it
must be sent to etc. In the original computer networks, the control plane and the data plane were
tightly coupled and integrated into one device, with xed functionality determined by the vendor
i.e. once design, the operator could not reprogram the routing and forwarding behaviour. Then,
with the introduction of Software De ned Networking(SDN), it became possible split the control
plane and data plane, program the control plane and make it access the data plane using a new
OpenFlow protocol [1]. The data plane itself, however still did not leverage any programmability
at this point.

Today, in several routing package suites like FRR [2], the control plane computes the routes and
populates the forwarding table in the data plane, which is the networking stack of the standard
Linux kernel. The problem with this architecture is that the data plane is \static" and cannot make
any decisions on its own. The data plane in the Linux kernel can only forward packets as instructed
by the control plane. However, recent advancements have shown that data planes can be leveraged
to have a certain degree of programmability, one instance of which was shown in P4 [3] switches.
This is extremely promising as now, we can make better forwarding decisions at the data plane
level, make updates in forwarding states, and if needed, even send feedback to the control plane,
about the state of the forwarding table in the data plane. This also allows for the router to have a
software based control plane, which can push the forwarding information to a programmable data
plane such as a P4 switch, which can run in hardware and lead to forwarding packets at line rate.

In this thesis, we present one use-case we can achieve well with this combined architecture. We
know that control planes are generally slower in computing best next hops in cases of link failures,
especially protocols like Border Gateway Protocol(BGP), which must updatesO(100k) entries in
the data plane's forwarding table. In our proposed setup, we can have a scenario in which the data

CHAPTER 1. INTRODUCTION 2

plane switches to a pre-computed \non-optimal" path in case of a link failure, which is disjoint
from the main optimal path. [4] This update will be much faster than relying on the control plane
for the path updates. However, since the control plane is in communication with the data plane
directly, once it computes the optimal backup path, it can replace the \non-optimal” path chosen
by the data plane. This should lead to reduction in loss of trac (as the recompute and path
update are now detached), leading to better performance in times of link failures. One thing we
need to account for is this concurrent path update between the control plane and the data plane,
must not lead to a race condition, which would be an important factor to consider in the design.

A use-case such as this, shows that it is worthwhile to explore the possibility of having a co-
design in the networks routers, which can run traditional software based control planes, along with
a programmable data plane. In our thesis, we present a new method to achieve this co-design.

1.1 Task and goals

In this project we attempt to create a co-design between software based control planes and pro-
grammable data planes for network forwarding devices such as routers.

1. We create a prototype of a Super-Node instead of a traditional Layer-3 router which runs a
Layer-3 routing control plane along with a programmable P4 data plane.

2. We create the Super-Node with the control planes in their own network namespaces, while
retaining the data planes in a common network hamespace

3. We make our initial Super-Node topology with all nodes within a single Autonomous Sys-
tem(AS) and use the Open Shortest Path Protocol(OSPF) to attain network wide forwarding.

4. Finally, we extend the prototype to networks with more than one AS, use the Border Gateway
Protocol(BGP) to route across multiple AS.

5. We also try to use the programmability of the P4 switch data plane to incorporate functions
such as load balancing via ECMP.

6. As an additional functionality, our project also provides a method to add FRR routers as
complete Layer-3 routers with standard Linux data plane to p4-utils [5], using P4-switches
as L2-switches, by making some small modi cations.

1.2 Overview

We present this thesis in several sections in order to organise and present our work in a coherent
manner.

~ In Chapter 2, we present the required background for the project, especially about the P4
switch architecture and the routing protocol suite(FRR) which we use in the project.

~

In Chapter 3, we present the detained design of our Super-Node architecture, in which we
combine a disjoint control plane with a programmable data plane, along with basic evaluation
for our model.

" In Chapter 4, we present a more detailed evaluation and further use cases of running our
Super-Node across di erent networks, along with implementation of functions such as load
balancing.

CHAPTER 1. INTRODUCTION 3

~ Finally, in Chapter 5, we analyse the possible impacts of our work and scope of future im-
provements to our Super-Node prototype based networks.

Chapter 2

Background

Our project attempts to explore the possibility of a joint, e cient design between the control plane
and the data plane of the network. In order to achieve this, we make use of several existing tools
and software suites, in order to make our network model. We present the required background and
preliminaries for the same in section 2.1.

2.1 Background

2.1.1 The P4 Language and Programmable Switch Architecture

Programmable switches have been a key area of research in the eld of computer networks recently,
as to enable greater control over the data plane of erstwhile "static" data planes, which could not
be reprogrammed to make packet level decisions. With the introduction of the P4 programmable
language, this completely changed. P4 (named for \Programming Protocol-independent Packet
Processors") is a language for expressing how packets are processed by the data plane of a for-
warding element such as a hardware or software switch, network interface card, router, or network
appliance. [3] Most of the targets which run P4 programs, have a separable control plane and a
data plane. P4 provides an implementation to only forwards packets using the data plane i.e. it
doesn't provide any implementation for the control plane.

Though P4 programs leverage no control over the network's control plane, it provides a P4Runtime
API, which provides an interface to communicate between the control plane and the data plane.
Network designers can use this P4Runtime API to communicate instructions from an external
control plane, to the P4 programmable data plane, which in turn can make packet forwarding
decisions.

The P4 language is developed to work independent of the protocol stack being used on the packet
i.e. P4 programs can process packets irrespective of the actual higher level protocol the packets use
for routing. We talk about P4 switches in the context of our project, which are switches capable
of running P4 programs and carrying our smart packet forwarding decisions. Due to the protocol
independent architecture, the switches do not know any information about the protocol and headers
on the packet, till it has been processed by the switch program. In the latest version of P4 i.e. P416,
P4 programs specify how the various programmable blocks of a target architecture are programmed
and connected. In this context, they develop The Portable Switch Architecture (PSA) [6], which
is a target architecture that describes common capabilities of network switch devices that process
and forward packets across multiple interface ports.

CHAPTER 2. BACKGROUND 5

Figure 2.1: P4 Switch Pipeline

Figure 2.1 shows a typical P4 program pipeline. We divide the P4 program into several control
blocks as shown in the gure. When a packet enters the P4 switch, it is processed by the following
blocks in the given order :

1. Parser: The parser is a state-machine which extracts the required headers from the packet,
which in turn decides on which packet headers, the P4 program can perform computation.

2. Match-Action Pipeline: A P4 programs contains structures called tables which use match
keys to match onto a particular eld in the packet header, port of incoming packet etc. It
then sets the values for the actions contained within the table, which decide how the packet
should be forwarded, changes made in the packet headers etc.

3. Deparser : Headers which have been parsed by the P4 program, need to be put back onto the
output wire, else packets will be dropped and not forwarded by the switch. The deparser is
responsible to adding the headers back in the correct order.

Apart from this, P4 allows packets to be processed by the ingress pipeline, replicated i.e. send
the packet to multiple egress ports or recirculated i.e. send the packet back to the ingress port.
After the packet arrives at the respective egress ports, it is queued, deparsed and forwarded on the
required ports corresponding to the forwarding decisions.

The P4 community is open source and it is managed today by the Open Networking Founda-
tion(ONF). The complete source code for P4 can be found here [7].

Software P4 target : The Behavioral Model
The current version of the P4 software target switch is the bmv2 switch (it stands for be-

havioural model version 2) and can be used for testing and debugging P4 data planes, and also
the functionalities of the control plane software which is used with the data plane. The bmv2

CHAPTER 2. BACKGROUND 6

model is maintained by p4lang [7] and hosts several implementations of the software switch such
as simpleswitch, simple_switch_grpc, psaswitch, etc. The input to the bmv2 switch is a JSON le
generated from the P4 program by a P4 compiler and the switch interprets it to implement the
packet-processing behavior speci ed by that P4 program.

2.1.2 Mininet and p4-utils

Mininet

Mininet [8] is a rapid, prototyping tool which helps create emulated networks inside a single OS
kernel (VM, cloud etc.) Mininet is used to create virtual network topologies and it provides support
for creating virtual hosts, switches, links and controllers. Mininet hosts run standard Linux network
software. Mininet networks run real code including standard Unix/Linux network applications as
well as the real Linux kernel and network stack, which makes it easy to test networking applications
on the emulated network topologies and move it to real hardware, with minimal changes.

Mininet provides an implementation to de ne custom switches by inheriting from its base im-
plementation of the switch node. By default, Mininet is con gured in a way to run all switches of
the network in same network namespace, however it provides a method to move the nodes into their
own network namespaces if needed. Mininet thus creates kernel or user-space switches, controllers
to control the switches, and hosts to communicate over the simulated network. The links between
hosts and switch pairs in Mininet are de ned as virtual ethernet(veth) pairs.

Mininet also provides a topology aware command-line-interface(CLI) which can be used for real
time monitoring and debugging, as it provides several CLI methods for interface management, link
changes etc. Mininet is an open-source implementation and the entire code for the same can be
found here. [9]

p4-utils

p4-utils is an application software which is used to build, develop, debug and test P4 networks.
It is an extension to Mininet with new classes of switches which support execution of P4 programs.
p4-utils is equipped with the original functions of Mininet, along with a new P4 switch node within
Mininet, which uses the simpleswitch model from P4's bmv2 switch architecture. p4-utils also
includes the P4 compiler to compile the relevant P4 program onto the software target. The current
version of p4-utils used in this project de nes the topology of the network, with the parameters
for the individual nodes in a JSON le, which is used to build the topology. Further, the P4
program written for the p4switches is executed, and several methods are provided for debugging
and testing for the programmable data plane created. p4-utils retains the original Mininet CLI and
also provides a simpleswitch_CLI to connect to the individual p4 switches, in order for faster and
smoother evaluation and testing.

p4-utils is an open-source software and its implementation can be found here. [5]

2.1.3 FRRouting(FRR) Suite

FRR is a free, open-source IP software routing suite which provides implementations for several
routing protocols such as OSPF, RIP, BGP, ISIS etc. The role of FRR in a networking stack is
to exchange routing information with other routers, make routing and policy decisions, and inform
other layers of these decisions. In general, the FRR routing policies install routing decisions into
the OS kernel, and the kernel networking stack makes the required forwarding decisions by lling

CHAPTER 2. BACKGROUND 7

in the forwarding tables. In addition to dynamic routing FRR supports the full range of layer 3
con guration, including static routes, addresses, router advertisements etc. [2]

FRR doesn't implement a single routing program which con gures all routing protocols, like
many traditional routing software. In FRR, each routing protocol is implemented as an individual
daemon which all run in parallel. The routing daemons do not directly communicate with the data
plane in this scenario. FRR provides a special daemon called zebra which acts as a middle man and
is used to communicate routing information to the kernel and coordinate routing decisions. Also,
the zebra daemon is used for basic con guration functions such as interface IP addresses, enabling
forwarding etc.m The system architecture for the FRR routing daemons is shown in Figure 2.2.

Figure 2.2: FRR Routing Daemons Architecture

The use of individual daemons for every routing protocol in FRR is advantageous as in removes
inter dependencies. Individual routing daemons can be started at any time and if one daemon
misbehaves, it does not cause the entire routing process to crash. Each daemon can individually
be loaded at run time if needed. Daemons can easily be enabled or disabled using the FRR
con guration, which can be run either in integrated mode with a single con guration le for all
daemons or in distributed mode with an individual con guration le for each daemon.

The zebra daemon is always active as it is responsible for instructing the kernel with the re-
quired forwarding behaviour for the packets. FRR also provides the option of running the protocol
stacks in the root kernel namespace or in user de ned custom namespaces.

Forwarding Plane Manager(FPM)

In FRR, the zebra daemon is responsible for aggregating routing information from di erent
protocols and selecting the best routes to Il the Forwarding Information Base(FIB) of the OS
kernel. Zebra passes these routes on to the kernel which uses its IP stack to forward packets as
described in the FIB for every IP pre x, which have been computed by FRR.

FPM is the forwarding plane manager of the zebra daemon which is used to receive the for-
warding plane with the routes received by zebra from the individual protocol daemons. This can
also include additional routes which might have been present in the kernel. FPM acts as a server
which receives all the routes sent by the zebra daemon.

Zebra uses a TCP connection to connect to the FPM server periodically, on the FPM port 2620
and server address 12D:0:1, which can be recon gured. Once the connection is set up, the entire
forwarding table is sent to the FPM server. This behaviour is part of FRR's service which is to

CHAPTER 2. BACKGROUND 8

provide the forwarding information computed by Zebra to external applications.

The default message format for the messages sent to the FPM server is the Netlink protocol
on Linux. By default, the sending messages to the FPM server is disabled and in order to enable
FPM to receive the routes, the zebra daemon must be con gured with the{enable fpm ag and the
module must be started with -M fpm. One thing which is key to observe here is that when zebra
sends routing messages to the FPM server, it doesn't stop populating the kernel, which continues
to receive updates in its FIB. Also, the FPM in FRR replaces routes for the same prex i.e. if a
route is added for a particular IP pre x, followed by another for the same pre x, the rst route
is replaced with the second route, making FPM contain only the latest updated route for the IP
pre X.

2.2 Related Work

The goal of this thesis is to develop a new network node with a router control plane and pro-
grammable data plane, which replaces the static data plane of the original router. We present
some cases where similar research has been carried out, using the FPM module in FRR. In [10],
they present a system of a Point-to-Point-over-Ethernet(PPPoE) plugin for Vector Packet Process-
ing(VPP), in which they use FPM messages from FRR's Zebra daemon to co-create a daemon
running BGP, with VPP.

The system of Super-Node's that we create, can be used for 0 oading functions from the control
plane to the data plane. We show some related studies on o oading network functions between
these network planes.

O oading functions in network nodes between the control plane and the data plane has been
an ongoing area of research for a long time. Most of the research in the eld, comes down to one of
two directions. The rst is moving functions which need to have faster compute, from the control
plane to the data plane, and the advancements in P4 programmable switches enable us now to run
functions directly in the data plane. In [11], Edgar et al. show this by o oading functions such
as failure detection, connectivity retrieval directly to the hardware data plane in order to achieve
faster performance. In [12], Naga et al. show the possibility of caching most hit switch table rules
in the TCAM, which allows faster information retrieval in the data plane, and leaving the less
frequently hit rules to be processed by the control plane. O oading network functions also exist
in the other direction. In [13], Wintermeyer et al. show as one of their results that rarely used
functions in the data plane can be pushed up to the control plane, without any signi cant overhead
in latency.

Chapter 3

Design

Our project aims at building a co-design network plane which consists of an independent control
plane which computes the routing behaviour for our network. It has independent routing protocols
running which compute the best possible routes which routes to reach the hosts in our network.
For our routing control plane, we use the FRRrouting suite, which acts as a tradtional control
plane. However, for our data plane, we no longer rely on the kernel's static data plane, which can
only receive routes from the control plane, update its FIB and forward packets, without being able
to make any decisions on its own. We leverage the recent advancements made in programmable
switches, and attempt to replace the forwarding data plane of the kernel with a P4 programmable
data plane, the concepts of which were introduced in sub-section 2.1.1.

3.1 Network Super-Node Design

The routing and forwarding device in our network consists of a control plane which runs the FRR
routing daemons and the data plane which is a P4 bmv2 simpleswitch architecture, and we will
refer to this node as a Super-Node as it has detached control and data plane implementations. The
basic network topology from which we started developing the idea of this super node consisted of
a pure FRR router, which had FRR for its control plane and Linux kernel's IP stack as the data
plane, which was populated by the zebra daemon.

Figure 3.1: Simple router setup

We setup this test architecture, using virtual nodes in the kernel, in Figure 3.1 in order to study
the possibility of replacing the Linux kernel as the data plane with a P4 programmable data plane,
as the Linux kernel only provides a static data plane. However, we realised that FRR doesn't
provide a good way to stop populating the FIB in the Linux kernel's data plane, if the routers are
physically connected, the link state is up and forwarding of packets is possible. Another problem

9

CHAPTER 3. DESIGN 10

we discovered is that if the kernel's data plane FIB is populated, it will always use the IP stack in
the kernel for forwarding between the nodes. We explored the possible of directly using the copy
of the forwarding received from the zebra daemon's FPM server, however as it doesn't prevent the
Linux kernel's FIB from being updated either, FPM alone did not provide a solution.

As there was no way to stop the kernel's forwarding plane from being populated, the only way
to prevent the kernel from forwarding was to was to remove the links between the routers, and
forward all route updates and messages only via the P4 switch's data plane. This allows us to fool
the router's control plane to believe that there are connected links to other routers in the network,
which in reality do not exist. Following this, we present our Super-Node based network topology,
which incorporates this idea in Figure 3.2.

Figure 3.2: Super-Node setup

In our Super-Node, we run an FRR control plane for computing the routes and a P4 data
plane for forwarding behaviour. As the routers no longer have physical connections, even if the
kernel FIBs get updated, they cannot forward as they are not connected to the hosts or the other
routers. We will call the router part of our Super-Node as a control plane router as it can only
compute routes but cannot push the routes to the kernel's data plane. However, for computing the
routes, it still needs to exchange messages with the other routers, for example, if running Open
Shortest Path First(OSPF), OSPF hello messages, link state update messages etc. will need to be
exchanged in order for the control plane router to compute the routes which will now be done via
the P4 switches. We will mention the details of this exact design in a later section. However, with
the Super-Node setup, we manage to fool the control plane routers to generate routes by making
it believe that it is directly connected to the other control plane routers.

3.2 Network Topology Setup and Design

We create a virtual topology for our network with the Super-Nodes. As there did not exist any

universal way to achieve this, this task was not as trivial as envisioned. We realised that replicating
the complete behaviour of the control plane routers in our Super-Nodes will not be straightforward,

as we would need to monitor the complete behaviour of the router, all di erent kind of messages
sent in a real router network, and then decide what the P4 switches would need to forward in order
to achieve the same performance. For this, we rst created a base setup with just the routers as
shown in Figure 3.1. To do this, we used Mininet [8] to create a 2-router, 2-host network topology.

CHAPTER 3. DESIGN 11

As Mininet does not provide an implementation to create Layer-3 routers, we added a custom
router de nition on a Mininet switch. To do this, we created a new virtual Router node which
inherits from the Switch class of Mininet. One thing we needed to ensure here is that every router
created must be assigned to its own namespace i.e. having a complete network stack to itself. By
default, Mininet runs all the switches in the default root namespace as the switches only perform
Layer-2 forwarding. However, Mininet provides a way to move nodes into nameless namespaces,
which are linked to the process ID(PID) of the created node. We moved the router to this namespace
for our setup.

Mininet on its own, does not provide any routing functionality on our created routers as there
is no implementation for the same. Hence, on our created Mininet virtual routers, we ran instances
of routing daemons provided by FRR. On each Router node in our 2-router topology, we ran the
routing daemons and con gured the daemons using FRR con guration les. For our initial tests, we
only con gured the zebra daemon for con guring the IP addresses of the router and its interfaces,
and enabling forwarding and the OSPF daemon on the routers to compute the routes for achieving
connectivity in our topology. The hosts were con gured as Mininet hosts, with IP addresses and
default routes which allowed packets to reach the routers. With this setup, we were able to achieve
a topology with running FRR daemons on routers created in Mininet, and using OSPF, achieve
network-wide connectivity. In this base setup, the Linux kernel's data plane was responsible for
forwarding IP packets.

For our Super-Node, we decided to use p4-utils [5] as it already provided good utilities to
integrate P4 switches with Mininet. However, the current implementation of p4-utils only allows
topologies to be created using JSON les, instead of using Python scripts which we were using in
our base Mininet topology. Also, the p4-utils implementation has existing IP assignment strategies
which assign IP addresses to the hosts and P4 switches together, in order for them to be used
for Layer-3 forwarding if needed. We did not want this, as for our P4 switches, we did need IP
addresses, as our control plane was the FRR daemon. In our base setup, we had kept our router
de nition as minimal and were running instances of the FRR routing daemons while we after we
created the topology. This design idea did not t into the p4-utils structure and we had to change
it. One more problem we initially discovered that since P4 switch node and router node, both
inherit from the Mininet switch class, it led to overlap on several occasions, leading to problems in
creating the topology. To x this, we did several things:

~

We added a new manual IP assignment strategy to be used with Super-Nodes which di er-
entiates between routers, P4 switches and hosts, and con gures IP addresses only for hosts.

We add running the instance of our FRR daemon directly inside our router de nition, in
order to prevent unwanted clash with the rest of the topology

We treat P4 switches and FRR control plane routers as entirely di erent objects, con gure
them separately to prevent any overlap

Finally, we add one link between the control plane router and the P4 switch which creates
our Super-Node

These steps created our topology, with only one problem still left. The control plane routers
in our topology created via Mininet had just one interface which connected to the P4 switch. In
order to con gure them with our FRR con gurations, the interfaces which "should connect" to the
others, had to be con gured in order for the zebra daemon to recognize them. However, we know
that the control plane router should have as many interfaces as many there are interfaces on P4

CHAPTER 3. DESIGN 12

switches connecting to each other in the topology. This is because the control plane router and
the P4 switches have a 1 to 1 mapping, which means there must be the same number of interfaces
on control plane routers. To x this problem, we add a dictionary of CP-interfaces to the router's
parameters, which we compute by enumerating the switches and counting the interfaces which
connect to other switches and hosts, and make the router node add these CP-interfaces for the
control plane routers in the router de nition using Linux IP commands.

3.3 Control Plane and Data Plane Co-Design

Once our setup was designed for Super-Nodes, our objective was to use the P4 switches (which was
the data plane of our Super-Node) and the FRR control plane routers (which was the control plane
of our Super-Node) to do the following:

1. Act as a transparent forwarding node for the control plane router's messages in order for
them to exchange messages and compute routes based on the protocol daemon

2. The control plane routers must send the complete routing information to its FPM server

3. The P4 switch must read the FPM server, select the useful routes and write table entries for
forwarding packets in the network

3.3.1 Generating Routing Messages

Most routing protocols rely on some kind of message exchange to determine neighbours, link-state
etc. in order to compute the routes it must use to reach them. For example, OSPF relies on a hello
message exchange which lets a pair of neighbours determine if they are connected, by periodically
sending and receiving hellos. Following this, they send link-state update and acknowledgement
messages in order to establish that they are connected via an active link, and then rely on hello
messages exchanged to determine the state of the link thereafter. We initially used only OSPF in
an attempt to generate routes and achieve connectivity. In our base setup, this was done via the
direct links from the routers.

In our Super-Node setup, the control plane routers had been con gured identically to the base
setup, with the same interface con guration, without real links. Thus, the control plane routers
attempt to send out the same messages on these interfaces, which it would when it was connected to
other real routers. In order to forward these messages via the P4 switches, we rst created packet
shi ers using Scapy [14], which allowed us to capture the packets sent out on the control plane
router's interfaces, and re-inject them onto the interface which connects the control plane router
to the P4 switch. The switch was programmed to forward the packets without making changes, so
that the other control plane router receives the message sent for routing.

However, this was a problem as routers do not process a packet if it receives it on an unexpected
interface. Since the control plane router expected to receive the packet on its interface which should
have been connected to the other router, but instead received the packet on the interface connected
to the P4 switch, it did not process the packet with the OSPF hello message. To x this, we would
need to re-inject the packet back onto the the intended interface, using another packet snier.
However, double re-injection would make the entire system much slower and complex to handle, as
packet sni ers needed to Iter much more to ensure correct re-injection of packets.

Hence, we decided to change our Super-Node to include more links between the control plane
router and P4 switch, in such a way that every interface of the control plane router is connected

CHAPTER 3. DESIGN 13

to a new "dummy interface” on the P4 switch. Figure 3.3 shows us the new Super-Node with
additional links to dummy interfaces.

Control plane Control plane
Router r1 Router r2

p4 switch s1 p4 switch s2

L J

-
Control Plane router interfaces are connected to

"dummy interfaces" on the p4 switch

Host h1 Host h2

Link to dummy
interface

Link to real
interface

Figure 3.3: P4 switches with dummy interfaces

This was helpful was now we did not need to re-inject packets as the control plane routers
automatically send the hello messages on the link to the dummy interfaces, which the P4 switch
could forward. However, there was a one small issue here.

Our topology was built using Mininet, which does not allow for multiple links to be set between
a pair of nodes, hence we had to look for another way to do this. Also, since the control plane
routers are in their own namespace and hence the CP-interfaces we created before in 3.2 were inside
the router namespaces. On the other hand, the P4 switches were in the root namespace, and hence
we could not directly create the dummy interfaces and add links from them to the control plane
routers. To solve this, we created the CP-interfaces and the dummy interfaces for the P4 switches
in the root namespace, added a virtual ethernet link(veth) using Linux IP commands and moved
the CP-interface to the router namespace. As Mininet namespaces are unnamed, we used the PID
of the namespace in order to move the CP-interface.

With all these steps in place, we were able to forward the correct messages for OSPF from one
control plane router to another, enable the router to generate routing information and receive the
same on the router’s FPM server.

3.3.2 P4 Data Plane Design

The P4 switch in our Super-Node acts as the data plane for forwarding packets to the destination
IP pre x. Our P4 data plane contains tables to match on certain elds of the packets, and actions
which set the outgoing port of the IP packet. We also need to make a distinction here between
packets which must be routed from control plane routers to each other, to determine the routes
for the IP packets. Apart from this, we will have tables to match on IP packets and forward them
between hosts.

CHAPTER 3. DESIGN 14

Pipeline for control plane router forwarding

We need to ensure that packets from the control plane router CP-interfaces, reach the correct
CP-interface of the other control plane router via the P4 switch. As we have dedicated links now
between the CP interfaces and the dummy interfaces on the P4 switch, which have a 1 to 1 map-
ping, we have a P4 table which matches on the incoming port on the P4 switch, which the dummy
interface. On matching on the port, we have written a simple Layer-2 forwarding action, which sets
the output egress port for the packet. As these interfaces only receive packets meant for the control
plane routers, it is enough to keep simple forwarding rules for this. We identi ed that two kinds
of packets need to be forwarded for the control plane routers to set up OSPF routes, i.e. Address
Resolution Protocol(ARP) packets and OSPF packets containing hello message, link-state-update
etc packets. We could achieve this by checking the kind of packet, and then hitting the appropriate
tables which contain actions to forward these packets to the required egress port. We write rules
for these tables as static entries in the switch as they are simple, constant and must be the same
forever. As we have complete control over programming the data plane, we can ensure that tables
get hit only if a certain kind of packet is received by the P4 switch.

Pipeline for 1Pv4 forwarding

We have a second kind of forwarding required for the P4 switches, which must forward IPv4
packets sent from one host to another. The routes computed by the control plane routers contain
the forwarding information for IPv4 which must be written as table entries in the P4 switch. As
the routes computed by OSPF already have end to end connectivity in the network i.e. the routing
information has a route to reach every host from every host, we use a simple IPv4 forwarding
logic which updates the MAC addresses for every packet, and sets the egress port based on the
forwarding rules in the routes, which the control plane computed and sent to the FPM server. We
write rules into the tables using a controller, which we will explain in the next section.

Apart from plain IPv4 forwarding, we also have a Equi-Cost MultiP-Path(ECMP) for load
balancing across multiple paths. ECMP carries out load balancing on multiple paths between the
source and the destination, if the paths have equal cost. Our control plane already returns us
multi-path routes for OSPF, as FRR’s OSPF daemon calculates ECMP on its routes, and returns
all routes for equal cost paths. We write an action in our P4 program to calculate hash values for
packets to be put on the same path. As ECMP ensures packets of the same ow are put on the
same path, we compute a 5-tuple hash value for the packet given as:

ECMP_hash = HashAlgorithm(ipv4:Src; ipv4:Dst; tcp:Src; tep:Dst; proto) mod #0P (3.1)

where ipv4.Src is the source IPv4 address, ipv4.Dst is the destination IPv4 address, tcp.Src
is the TCP source port number, tcp.Dst is the TCP destination port number, proto is the IPv4
protocol used and #OP is the number of output ports, determined by the number of paths of equal
cost. In our P4 code, we have an table ecmp_to_nhop, which matches on the ECMP has value,
calculated if multi-path is present, and sets the egress port as a di erent output port for each
di erent hash value calculated. The hash algorithm we use is the CRC16 Hash algorithm, as it is
available as a P4 extern function.

A summary of all the tables and match-action logic we use in our data plane program is given
in table 3.1.

CHAPTER 3. DESIGN 15

Table Match-Key Action Type
ARP Ingress Port Forward ARP packets Control Plane
OSPF Ingress Port Forward OSPF packets Control Plane
IPv4 IPv4 address Forward 1Pv4 Data Plane
ECMP | ECMP group, ECMP hash | Forward IPv4 using ECMP | Data Plane

Table 3.1: Summary of our P4 program’s match-action pipeline

3.3.3 FPM and P4 Switch Controller

Our controller for the P4 switches consists of two sections, an FPM server which contains the routes
which should be populated in our P4 forwarding tables and a python controller, which works with
p4-utils in order to connect to the P4 switches and populate the table entries for forwarding 1Pv4
packets. In the normal scenario, with simple P4 switches and no external FRR control plane, it
is possible to have a single controller for all the switches as all the switches are in the same root
namespace. However, for our scenario, an instance of the controller must be run inside every router
namespace, as every router has an FPM server inside its namespace, which cannot be accessed from
outside the router namespace.

To solve this, we connect to the P4 switch using the controller from inside the router namespace.
For our P4 simple_switches, it is possible to connect to the switch using a controller in the same
namespace, as long we have the thrift port of the switch. For connecting to the P4 switch, from
inside the router namespace, we assign the interfaces which connect the control plane router and P4
switch (the real link for the real interfaces here, not the dummy interfaces) a pair of IP addresses, as
for the simple_switch architecture, it is possible to connect to the switch from outside the namespace
via a thrift IP address. This IP address pair for the P4 switch becomes our control interface, which
helps the data plane of the switch connect to the control plane, similar to the CPU port in a real
switch. We took care that the IP address assigned to the control interfaces, doesn’t overlap with
the IP addresses of the hosts and control plane router’s CP-interfaces. We illustrate this in Figure
3.4.

Control plane

Router .
Controller runs in the

= » «— router namespace and
'b?< connects to the switch

Control port
IPs set on
these ports

p4 switch

Link to dummy
interface

Link to real
interface

Figure 3.4. Controller to connect to P4 switch

The FPM server receives routes from the control plane router’s zebra daemon in the form of
Linux Netlink messages. To understand the messages, we wrote a Python script to decode the raw

CHAPTER 3. DESIGN 16

data bytes of these messages into readable form for the switches to understand. This is possible as
FPM frames all data with a header to help the decoder understand how many bytes it has to read
in order to read the full route message. Also, we realised that since we had moved the CP-interfaces
into the router namespace from the root namespace, we also needed to map the output interface
values returned by the FPM server (as they got altered in the root namespace), to real output port
numbers, using our controller. We present one sample decoded FPM route message for clarity:

{’family’: 2, ’dst_len’: 24, ’src_len’: 0, ’tos’: 0, ’table’: 254, ’proto’:
11, ’scope’: 0,’type’: 1, ’flags’: 0, ’attrs’: [(’RTA_DST’, ’10.2.0.0’°),
(’RTA_PRIORITY’, 11), (’RTA_GATEWAY’, °10.0.1.2°), (’RTA_OIF’, 26715)],
’header’: {’length’: 60, ’type’: 24, ’flags’: 1025, ’sequence_number’: O,
'pid’: 0}}

With reference to Figure 3.2, this routing message shows how a packet from the host connected
to the r1 sl Super-Node, must reach the r2 s2 Super-Node. This is an OSPF learnt route
for forwarding and we select the necessary parts of this route to populate the forwarding tables
in the P4 switch. We consider the dst_len, which gives us the IP pre x, the RTA_DST which is
the destination host IP pre x and the 'RTA_OIF’ which gives us the output port for forwarding
packets(we mapped this port to the actual port for forwarding as mentioned above).

Using this information in the routes received from the FPM server inside the control plane
router’s namespace, we write the entries to the actions inside the tables we mentioned in section
3.3.2. Doing this, we are able to achieve end to end connectivity between the hosts, using our
Super-Nodes for forwarding. For developing our setup and architecture, we had used a 2 host , 2
Super-Node topology as depicted in Figure 3.2.

Chapter 4

Working on Di erent Use-Cases

For creating our Super-Node design, we have only worked with OSPF as the routing protocol,
for a 2 host, 2 Super-Node topology, with a single path for connectivity. We need to test our
design and check its working on larger topologies, with multi-path routing if present. Also OSPF
is an Interior Gateway Protocol(IGP) which only routes between routers in the same Autonomous
System(AS). We also need to evaluate how our Super-Node design works with control plane routers
across multiple ASes, which are connected via an Exterior Gateway Protocol(EGP) such as BGP.
In this section, we present running both multi-path routing and routing across various ASes as
evaluation and use-cases for our Super-Node based networks.

4.1 Testing on Multi-Path Topologies

For setting up our Super-Node design and testing to check for end to end connectivity, we had used
OSPF on a 2 host, 2 Super-Node topology as shown in Figure 3.2. As we mentioned in our design,
we had programmed the P4 data plane to perform ECMP load balancing on paths of equal cost, if
the packets belonged to the same ow. To test this and check if multi-path routing works on the
required topology, we set up a new 3 Super-Node network in form of a clique as shown in Figure 4.1
. Note that we remove the links between the CP-interfaces and the P4 switch’s dummy interfaces
in the gures, for the sake of visual clarity, they are still present.

We set the OSPF costs on the output interfaces of the control plane routers in such a way that
there are two paths of equal-cost from host hl to host h2. The rst path is h1 $ s1 $ s2 B h2
has a cost of 4 and the second path, h1 $ s1 $ s3 P$ s2 $ h2 also has a cost of 3+ 1 =4. Thus,
IP packets from h1l to h2 and vice-versa must be load balanced by ECMP on both the paths.

In order to test this, we built a custom packet generator using Scapy [14], where we crafted
TCP packets to be sent from hl to h2 and the reverse also from h2 to hl . Then, we monitored the
interfaces on each of the link to con rm that packets were indeed load balanced on di erent links
between the pair of hosts hl and h2. As the number of multi-paths for us, is decided by the control
plane routers who learn the topology, we use this information to set the number of output ports
accordingly for the packets to put on multi-path when needed. Our P4 switch program checks if
the router computes multi-path routes, and sets multiple forwarding ports using the ECMP hash
table, mentioned in section 3.3.2.

In order to ensure more robust testing, we also repeated the experiment with di erent OSPF
costs, and performed the same experiment with the host pairs hl and h3 and h2 and h3, where
multi-path does not exist. We saw that the load balancing with ECMP works only where then are
multiple paths of equal cost in our setup, from the control plane router’s point of view, else normal

17

CHAPTER 4. WORKING ON DIFFERENT USE-CASES 18

- -
' - Control plane
Router r2

Control plane
Router r1

E p4 switch s1

Host hi

Path cost 4

p4 switch s2
Host h2

Path cost 1 Path cost 3

p4 switch s3

" 4> Control plane

- Router r3
Host h3

Figure 4.1: 3 Super-Node Multi-Path

IPv4 forwarding is performed by the P4 switches. As ECMP works well in our setup, in future
this can also be extended to other load balancing methods such as weighted-ECMP, round robin
or FlowLet [15] based multi-path by making appropriate modi cations in the P4 program.

4.2 BGP and Multiple Autonomous System Topologies

So far, we have only considered OSPF routing within one Autonomous System(AS). We now try
to extend our Super-Node based networks across multiple ASes, and try to run Border Gateway
Protocol(BGP) daemons on the routers, in order to communicate routes across multiple ASes. One
thing we need to keep in mind is that as we have detached the control plane and data plane in our
Super-Node, the P4 data planes are all in the same root namespace and do not have any concept of
di erent ASes. To build our new network, we now run eBGP peering on the border Super-Node’s
control plane routers, and run iBGP in the Super-Nodes which have a their control plane router’s
within the same AS. We also run OSPF as an Interior Gateway Protocol(IGP), independently
within the AS as of now. We thus, create a network topology with 2 AS, by having identical
con guration(as Figure 4.1 within each AS as of now, for testing. Figure 4.2 shows our system with
2 AS, which are as per the control plane routers, the switches are all in the same namespace, and
do not know the di erence.
A few things change when we introduce the concept of multiple AS for our setup.

1. The border Super-Nodes now behave di erently as their control plane routers have more CP-
interfaces to connect to other border routers, and hence the P4 switch correspondingly has
more dummy interfaces. This needs to be recognised by our controller.

2. IP packets to be routed within the AS have di erent routing pre xes as compared to packets

	Introduction
	Task and goals
	Overview

	Background
	Background
	The P4 Language and Programmable Switch Architecture
	Mininet and p4-utils
	FRRouting(FRR) Suite

	Related Work

	Design
	Network Super-Node Design
	Network Topology Setup and Design
	Control Plane and Data Plane Co-Design
	Generating Routing Messages
	P4 Data Plane Design
	FPM and P4 Switch Controller

	Working on Different Use-Cases
	Testing on Multi-Path Topologies
	BGP and Multiple Autonomous System Topologies

	Outlook
	Is using FRR as a control plane good?
	Future Work

	Summary
	References

