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Abstract

Middleboxes are ubiquitous in today’s internet. While they provide many useful services, they
are also responsible for more than a few problems.

Substrate Protocol for User Datagrams (SPUD) is being developed to make cooperation with
Middleboxes possible over an UDP-based encapsulation.

The goal of this project was to develop a framework that tunnels existing TCP traffic over SPUD.
On this basis further evaluation of this new protocol can be carried out and results provide
valuable feedback for further development.
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Chapter 1

Introduction

Today the Internet is not a simple end-to-end network anymore as it was in the early days.
Nowadays there are a lot of middleboxes between two endpoints.
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Figure 1.1: Graphic description of the Internet with middleboxes

1.1 Motivation

Middleboxes are deployed for a wide variety of reasons. Simple examples are NAT’s or Firewalls
but there exist much more complex constructs. A more detailed view of middleboxes is given
to the reader in the background chapter. One key point for the motivation, each middlebox
individual makes assumption on what can safely be manipulated.

All of this makes deploying a new transport protocol relatively difficult, thus new innovation is
severely limited.

Middleboxes today rely on understanding the transport header to decide on how to handle this
packet.

An additional requirement for a new transport protocol is signalling of e.g. traffic semantics. This
would for example enable to signal low-latency service requirement, amongst other use cases.
1.2 Solution

The solution is called SPUD. Substrate Protocol for User Datagrams is a proposed protocol
designed to avoid all these problems by doing the new protocol over an UDP based encapsu-

lation. To assure compatibility, the packet of the new protocol is just added right below an UDP

5



6 CHAPTER 1. INTRODUCTION

header. Now the middlebox layer is always at the same position. With SPUD there’s finally a
way for middleboxes and endpoints to communicate easily. It's a bit like enhanced ICMP control
messages.

1.3 Task

Following tasks needed to be completed:

e Getting familiar with SPUD, this meant reading RFC'’s

Catching up about kernel module programing & netfilter

Finding a solution to inject TCP packets

Collecting information about C socket programming

Designing and discussing the program flow

Writing the actual program

Debugging and testing

1.4 Code & Program Flow Diagrams
All sourcecode including earlier version of code and Flow Diagrams are available on Github:
https.//github.com/G-GFFD/SemesterarbeitSpud

A zip file containing everything is also accompanying this document.



Chapter 2

Background

This chapter should serve as a short introduction to the most important topics of this semester
project. In no way it claims to cover the theory extensively or even complete, for this reference
to specific literature is advised.

2.1 Middleboxes

Middleboxes are ubiquitous in today’s internet. They are deployed for a wide variety of reason.
The term middlebox is defined in RFC 3234 as "any intermediary device performing functions
other than the normal, standard functions of an IP router on the datagram path between a
source host and destination host." Commonly known examples are Firewalls or NAT’s.

Middleboxes manipulate, filter or inspect passing traffic. They may do so in order to improve
security or performance.

Currently middleboxes analyse each packet individually to decide on how they want to handle a
flow of packets. This only works if the middleboxes understands the transport protocol. There is
not much cooperation in this process.

A simple example for cooperation can be signalling start/end of a flow.

Today they have only limited possibilities to communicate with the endpoints. In fact the can
only communicate with the sender via ICMP messages. A wide range of different application
could benefit if better cooperation is possible.

Deploying a brand new cutting edge transport protocol is a very challenging task. Too many
middleboxes will simply drop packets they don’t understand. This problem significantly affects
any new protocol.

However, there is a new protocol, which is able to overcome those issues.

2.2 SPUD

SPUD, short for Substrate Protocol for User Datagrams, is a prototype protocol being developed
to enable explicit cooperation with Middleboxes.

Technically SPUD groups multiple UDP packets together in a so called "tube". Right below the
UDP header a short SPUD header is added which contains all relevant information. All data is
stored below.

As data, in a first step, packets of any current transport protocol can be encapsulated. Graphi-
cally shown here with TCP, the transport protocol chosen for this project.
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8 CHAPTER 2. BACKGROUND
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Figure 2.1: Encapsulation of a TCP packet in SPUD

In a later stage, data will be wrapped in CBOR' and all data will be encrypted for security
reasons. So middleboxes can only analyse the Header, they can’t tamper with the encrypted
data. A non-cooperating malicious middlebox may still manipulate the SPUD header or just
silently drops the packet.

In SPUD, a set of multiple related packets is called a tube. This so called tube is identified by
a tube-ID which is shared amongst all those related packets. Tubes have state, they always
need to be in one of the following states: opening, running, or resuming. Any communication
between endpoints and middleboxes is bound to such a tube. The first packet of a group of
related packet is expected to have the open command set, similarly the last is expected to carry
the close command.

As a design requirement, SPUD must work in the present Internet. Due to UDP, SPUD can
very easily be deployed as every current operating systems supports this. There are no
modifications in the Kernel required. Userspace Application wanting to use SPUD can simply
do so over a normal UDP socket, so deployment is really easy.

Only for much later in case the protocol becomes well established direct support by the kernel
is envisioned.

2.2.1 SPUD Header

0 1 2 3
012345678901234567890123456789012
+—+—+—+—+—+—+—+—F+—+—+—+—+—+—+—+—+—+—+—+—+—t+—+—+—+—F+—F+—F+—+—+—+—+—+
| magic = 0xd80000d8 |
T o e e L A S e e e A S L A S o e e e
tube ID |

—_ 4+ —
+

L e E e e e
lemd|a|p| resv
+—t—t—t—t—+—+—+—

—t—t—t—+—F+—t+—+—F+—t+—+—F+—t+—+—F+—t+—+—F—t+—+—+—+—+—+—+
CBOR map. .. |

—t—t—t—t—t—t—t——Ft—t—+——Ft—t———F—t————+—+—+

+ — +

Figure 2.2: Visualization of the SPUD header - taken from the Internet-Draft

In every SPUD Header, the first 32bits are 0xd80000d8 (Hex) or 1101 1000 0000 0000 0000
0000 1101 100 (binary). This allows very quick and simple identification of SPUD packets.

Concise Binary Object Representation, see RFC 7049
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The 64bit tube ID identifies a group of related packets.
2 bits of command, they can be:

- 00 Data, indicates this packet only contains Data

- 01 Open, requests to open a new tube

- 10 Close, command to closes a tube

- 11 Acknowledgement, acknowledges the opening of this tube

ADEC: Application Declaration, if this bit is set the packet contains Application Declaration in
the Data

PDEC: Path Declaration, if this bit is set the packet contains Path Declaration in the Data
4 Reserved Bit (must be set to zero in this version of the protocol)
If the Data is packed in CBOR, a CBOR map follows next.

Just after the header, the data of the packet is stored. Each SPUD packet contains data. Even
if there is a new command or any other option that changed to be sent, there is no need to
send a packet consisting just of the header. Just keep track of this state and sending can be
postponed until there is data to be sent over this tube.

Tubes may time-out after a period of inactivity.

2.3 TCP

TCP, the Transmission Control Protocol is a core protocol of the Internet. It provides reliable
transmission of packets on the transport layer. It's connection oriented, a connection needs
to be initiated and closed. During connection setup a three-way handshake needs to be
exchanged. Afterwards data can be exchange in a stream, this conceals the packet structure.
Despite being developed in the 1980ies, it’s still widely in use today. However the internet has
since evolved and a lot of today’s applications could benefit from the new protocol SPUD.

For this reason TCP is an ideal choice to be tunnelled over SPUD in order evaluate the new
protocol.

TCP itself in all details is much more complex than general believed.

In all modern operating systems TCP performance is very well optimized. One resource con-
suming task, especially if it has to be done for countless packets is the calculation of the TCP
checksum. Today, this task is often offloaded to the Network Interface Card which has dedicated
hardware support to do this. As a consequence TCP packets in the Kernel do not yet contain a
valid TCP checksum.
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Chapter 3

Implementation

3.1 Overview

The implementation consists of a kernel module and an userspace application. It's programmed
in C for Linux and tested under Ubuntu 14.04 LTS and Debian 8. Super User rights are required.

The actual SPUD version used in this implementation is called Substrate Protocol for User Data-
grams (SPUD) Prototype draft-hildebrand-spud-prototype-03 according to the Internet-Draft
from March 09, 2015.

3.2 Structure

SPUD

Userspace
Application

Userspace
Application

Figure 3.1: Structure of implementation, tunnelling TCP over SPUD

3.2.1 Kernel Module

The kernel modules task is to intercept existing TCP traffic and send it to the userspace
application. To do so, the kernel module registers a Neffilter hook at NF_INET_POSTROUTING
to capture all packets which are about to be passed to the Network Interface Card. Once a
packet is detected, the hook function gets called. It looks at the IP header to detect if it's a
TCP packet. A copy of a TCP packet is sent to usersapce, the original TCP Packet is simply
discarded (NF_DROP). Packets that don’t contain TCP are just released (NF_ACCEPT).

As the kernel module can be loaded anytime, even when the userspace application is not
running, packets are only sent into userspace, after the userspace application sent a hello

"https://tools.ietf.org/html/draft-hildebrand-spud-prototype-03
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12 CHAPTER 3. IMPLEMENTATION

message to the kernel module, which initiates a session. Communication between both is done
via a Netlink Socket.

Error Messages are printed into the kernel log and can readily be accessed by the command
dmesg.

3.2.2 Userspace Application

This is the main part. It has three tasks, sending SPUD, receiving SPUD and keeping state of
tubes. For each task there is an own thread running.

Earlier versions simply had a while(1) loop and handled sending / receiving SPUD alternatively.

Task tcptospud (called after its name in the source code) first sets up a netlink socket and tells
the kernel module that it's ready to handle TCP packets. After that, it starts a loop to do it's main
task, tunnelling TCP over SPUD. After receiving a new intercepted TCP packet from the netlink
socket it extracts all necessary data from the IP and TCP Header. With those information it sets
up a a new sockaddr_in structure for the external receiver of the SPUD packet. After identifying
the TCP tuple it checks if there already exists a matching tube or creates a new one.Most
difficult task here is to correctly handle the TCP FIN Sequence, as the program is symmetric
but TCP’s FIN sequence not.

The task responsible for handling incoming SPUD’s is called receivespud. First it sets up an
UDP socket listening on a specific port where it expects to receive its SPUD packets. After
receiving a packet, the SPUD header and the SPUD data need to be extracted. To handle
the received SPUD, the Function HandleReceivedPacket is called. The header is analysed for
the CMD, and performs all necessary actions. SPUD itself is described in more details in the
preceding chapter. As all SPUD Packets contain payload, there is always TCP Data that needs
to be injected locally. Injecting TCP packet is done by writing an IP packets to a Raw socket. To
do this, first a new IP Header needs to be created, this includes calculating it's checksum. Then
the packet is ready to be injected locally.

Finally there is a Thread Status. It keeps track of open tubes, prints status updates in the
console and removes tubes after they have been inactive for too long.

Threads are implemented using pthread and semaphores protect critical sections. In our case
critical sections are all access to the list of open tubes as these is shared amongst all three
threads.

3.3 Howtorun

This section gives a brief step by step introduction how to get the current implementation up
and running. On each of the two endpoints

e root rights
o git

Open a Terminal, navigate to the folder where TCPtoSPUD should be store.
Execute:

git init && git pull hittps:github.comG-GFFD SemesterarbeitSPUD.git

In the current version, for debugging purposes, all intercepted TCP packets get send over
SPUD to a fixed IP adress. Thus, you need to adapt those defined addresses in tcptospud.c
and spud.c just at the top. Also in injectcp.c the parameters for the header of the injected packet
needs to be configured.
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Compile userspace part with:
gcc teptospud.c spud.c tcphandling.c injectcp.c tubelist.c -o tcptospud -pthread

Compile Kernel module with:
sudo make

Due to the limits of this implementation, traffic cn only be tunnelled in one direction. This
problem is discussed in the last chapter under ’Conclusions’. Insert the Kernel module only at
one end.

sudo insmod kerneltcp.ko

Now everything is ready to run the sofware at both endpoins

Jteptospud

To remove the kernel module again:

sudo rmmod kerneltcp

On some systems, the TCP maximum segment size may be to big and UDP packets containing
SPUD start to get fragmented. This results in packets without SPUD header and the purpose
of the software is broken. To make sure this does not happen or if you already have observed

this behaviour e.g. in Wireshark, limit the TCP MSS with:

iptables -t mangle -A POSTROUTING -p tcp —tcp-flags SYN,RST SYN -o ethO -j TCPMSS
—set-mss 1460

This sets an iptables so that all SYN and RST SYN packets contain an option which limits the
MSS to 1460 bytes.

The actual value may depend on the test setup.

3.4 Hints for debugging

A lot of time consuming debugging had to be done during this project and will very likely also
be necessary in further continuation of this project.

Therefore a short list of some tools used for debugging is provided next.
Add the -g option to the compile command to enable debug information.
Find memory leaks on the heap with valgrind:

valgrind —leak-check=full —track-origins=yes ./tcptospud
Or debug it with gdb.

A lot of problems are not acutall C programming bugs, instead concern corrupted packets or
distorted TCP streams.

To trace any injected packet and find out where it got lost iptables was very helpful.

All TCP connection of a machine can be shown with:
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ss -t-all
This is also to check on which ports the TCP server is listening for incoming TCP.

And of course the well known tool Wireshark is irreplaceable to analyse & fix corrupted packets
be it TCP or SPUD. It can also trace & compare complete TCP flows.



Chapter 4

Test Setup

4.1 Overview

During development and after finishing an application, testing is always very important. To do
s0, we need an appropriate test setup. In a first part, we need it for debugging purpose, later for
evaluating the benefits of SPUD, the main purpose of our program.

4.2 Debugging tunnelling

To quickly test the tunnelling of existing TCP traffic by the program, a simple source of TCP
traffic was needed.

Using two virtual machines, one acting as client, the other as a server this was simple done by
generating HTTP requests. On both endpoints our program is running.

Now due to the restriction that intercepting and injecting TCP is currently not possible on the
same machine, we can only tunnel TCP over SPUD in one direction while in the other direction
the TCP runs normally. On the endpoint where we want to intercept the TCP, the Kernel Module
needs to be active.

If Python is enabled on the system,

python -m SimpleHTTPServer

will create a simple HTTP Server, which is perfect for our purpose.

Intercepting and analysing the TCP flow can easily be done via Wireshark

Shown in the figure with the Wireshark screenshot is the problem that took well over a month to
resolve. The injected packets, injected as Ethernet packet correctly arrived at the system and

showed up fully correct in Wireshark. Everything matched the packets of the same connection,
which wasn’t intercepted and tunnelled over SPUD.

4.3 Evaluating the benefits of SPUD

Later, to test the effectiveness of SPUD in networks with middleboxes a direct connection won’t
do the job anymore.

A test setup with at least one middlebox in between is needed.

Initially it was planned to write an application for middleboxes as well, however this had to be
abandoned due multiple issues and finally due to time problems. This needs to be done as next

15
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Figure 4.1: Wireshark analysis of the ignored SYN packet of the Injected TCP (right) vs a normal
TCP Flow (left)

Server %&Q Client
IO

Server hosts SPUD - aware Client streams
video Middlebox video

Figure 4.2: Proposed Test setup with Middlebox in between
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task before evaluation of the protocol can take place.

However a lot of code and experience from the current implementation can be reused with only
relatively small adoption needed.

Basically, the Kernel module here needs to intercept UDP packets and redirect them into
userspace. This can simply be done by changing the protocol on which the netfilter Hook trig-
gers. In the userspace application the packet is processed by the SPUD handling routine and
re-injected accordingly.

This test setup can either be made "virtually" by having different virtual machines running with
some acting as middleboxes and on the endhost the routing configured accordingly.

Another more visual way, to make it more real and less abstract, would be to make an raspberry
pi acting as middlebox. One Endpoints just connects to the raspberry pi via wifi, the raspberry
pi forwards all traffic to the LAN interface and vice-versa (this is called bridging).

Of course the raspberry pi acting as middlebox intercepts passing packets, detects SPUD and
handles them according to defined rules.

IP forwarding needs to be activated, this is done by:

sysctl -w net.ipv4.ip_forward=1
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Chapter 5

Conclusion and Outlook

5.1 Conclusion

The main task was to design and code a framework, that tunnels existing TCP traffic over
SPUD. This should serve as a basis for further evaluation in a test environment to gain valuable
feedback for further development of this proposed protocol.

Due to many unexpected complications things didn’t move as smooth and took lots of time to
resolve.

After 14 weeks it’s time to look at the current state of the project:

Whats works:

o Intercepting TCP packets in the kernel
e Basic SPUD handling
e Tunnelig TCP over SPUD*

e Injecting TCP packets

However there are some restrictions, the most signigicant is it cannot tunnel a complete TCP
stream of a HTTP connection, even though all steps individually with just one packet seem to
work.

The main problem is that in the current implementation intercepting TCP packets and injecting
TCP packets via a raw socket doesn’t work together. Because of this, tunnelling actually only
works in one direction until a solution is found. This appears to be a bit tricky. There exists
other software doing this already, for example TCPcrypt. ' TCPcrypt however is circumventing
this problem by using the pcap API. This way the interface is not blocked an injecting packets
succeeds. The big problem with this approach however is how to drop those intercepted TCP
packets as pcap only supports sniffing. There’s a quiet nasty hack required to solve this, so this
approach was not further followed.

Additionally it must be made sure that injected packets don’t get intercepted immediately again.
Due to limits of the current implementation this case could not be studied yet. This may also
prevents the current one-way tunnelling of TCP over SPUD to work correctly.

Currently there exists two branches of the sourcecode. Initially in addition to the TCP header
and data the complete IP header was also encapsulated in the SPUD packet. This is the branch
that almost works. However, the IP header should not be included instead it should be rebuilt
at the endpoint. This version however currently has problems with corrupted TCP payloads and
thus bad checksums.

Thttp://www.tcpcrypt.org/
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5.2 Outlook

A first part may be complete but there is still a lot of work left in order to set up a complete
working test environment. Only then relevant measurements can finally take place.

There is some debugging, extension, rework and fine tuning of this first part needed.

The main task of the next part should be focussed on the middlebox implementation. Of course
some thinking must be spend on how to solve the problem with intercepting and injecting TCP
packets simultaneously on the same endpoint and getting this first part to work completely.

With this, a first working pilot testbed should be possible. After adding a first signalling service
the evaluation of SPUD can begin.

Limited evaluation may still be possible even if the problem of injecting/intercepting cannot be
resolved, test cases would need to be planned accordingly.

Appart from this main points, there are lots of smaller points which need attention.

One problem is that currently opened SPUD tubes don’t get acknowledged. This is due to two
reasons:

1. Even though TCP and SPUD are bidirectional two separate SPUD tubes are opened for
the connection, one from each endpoint as it intercepts the first TCP packet of the flow

2. A SPUD packet always contains data

Now due to the first point there is only SPUD traffic in one direction in each tube. The first
packet in the opposite direction will have the ACK command flag set, however there simply is
never a packet to be sent in this direction over this tube, as all packets in this direction are
transmitted over the other tube. As consequence, in practice there is never an ACK to a SPUD
tube.

This could cause problems during the testing phase when everything is supposed to work, if
middlebox depend on seeing this ACK for a tube.

Other things that can be done in a further project:
e Expand to IPv6
e GUI for endpoints
o Filter for IPs that shouldn’t be tunnelled

e Optimization of current code & debugging
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