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Modern networks architectures are  

split in (at least) two planes
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Modern networks architectures are  
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Network planes can be implemented in both 
software or hardware

data plane 

control plane 

Software  Hardware 

Software  Hardware 



Existing data plane implementations cover the entire 

software/hardware spectrum
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data plane 
OVS ASIC

VPP

DPDK

FPGA

control plane 

Click

Software  Hardware 

Software  Hardware 
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What about the control plane ? 

data plane 

control plane 

OVS ASIC

VPP

DPDK

FPGAClick

Software  Hardware 

Software  Hardware 



Control plane implementations make 

seldom use of the hardware resources
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data plane 
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Not explored
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data plane 

control plane 
BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software  Hardware 

Software  Hardware 

Do we care?



Even state-of-the-art software control planes 
have room for improvement 
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Even state-of-the-art software control planes 
have room for improvement 
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React1 It can take up to a minute  
to detect normal failures 



Even state-of-the-art software control planes 
have room for improvement 
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React1

Compute2 ~1.5 minutes to converge the 
control plane of an IXP route server



Even state-of-the-art software control planes 
have room for improvement 
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React1

Compute2

Update3 O(100us) to update a forwarding 
entry
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data plane 
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data plane 

control plane 
BIRD

Quagga

FRRouting
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VPP
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Software  Hardware 

Yes!
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data plane 

control plane 
BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software  Hardware 

Software  Hardware 

Can we do something 
about it?



Modern programmable devices can perform  
computations on billions of packets per second 
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Modern programmable devices can perform  
computations on billions of packets per second 
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Read & modify packet headers
e.g. to update network state

Basic operations
e.g. min & max

Add or remove custom headers
e.g. to carry routing information 

Keep state
e.g. to save best paths
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data plane 
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data plane 

control plane 
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Quagga
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Software  Hardware 

Yes!
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data plane 

control plane 

hardware 
based CP

Step 1

BIRD

Quagga

FRRouting
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VPP
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data plane 

control plane 
 HW/SW Codesign

Step 2

BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software  Hardware 

Software  Hardware 
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Sensing1 monitors network  
to detect changes

Main tasks to compute  
forwarding state are…
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Sensing1

Notification2

Main tasks to compute  
forwarding state are…

exchanges with network devices 
all the information learnt
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Sensing1

Notification2

Computation 3

Main tasks to compute  
forwarding state are…

Computes forwarding paths  
when network changes are detected

Updates the data plane  
accordingly
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Hardware-based network sensing 

Goal

Challenges
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Detect both hard and gray failures 

Hardware-based network sensing 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Detect both hard and gray failures 

Hardware-based network sensing 

Goal

e.g. random drop, TCAM bit flips

Challenges
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Hardware-based network sensing 

Goal

Challenges Basic hello-based mechanisms are not enough

Detect both hard and gray failures Goal

e.g. random drop, TCAM bit flips
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A B

Switches synchronously exchange  
packet counts
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A B

destination

# counter

detection state

stored in registers

Switches synchronously exchange  
packet counts

0

0

0

0

0

0

# counter

destination
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A B

start  
counting

stop  
counting 

traffic

destination

# received & forwarded packets

detection state

stored in registers

Upstream switch starts probing  
campaigns

0

0

0

0

0

0

# sent packets

destination
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A B

start  
counting

stop  
counting 

traffic

destination

# received & forwarded packets

detection state

stored in registers

Traffic for some prefixes  
gets dropped

0

0

0

0

0

0

# sent packets

destination

red packets  
get dropped 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A B

start  
counting

stop  
counting 

traffic

destination

# received & forwarded packets

detection state

stored in registers

send counters & compare

Downstream switch sends counters 
to upstream

0

2

2

3

2

2

# sent packets

destination
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A B

start  
counting

stop  
counting 

traffic

destination

# received & forwarded packets

detection state

stored in registers

send counters & compare

Upstream switch detects the failure  
by comparing counters

0

2

2

3

2

2

# sent packets

destination



Hardware-based notifications 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Goal

Challenges



Hardware-based notifications 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Implement a broadcast notification 
mechanism in hardware

Goal

Challenges



Hardware-based notifications 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Implement a broadcast notification 
mechanism in hardware

Goal

Challenges

Require reliable communication 

Avoid broadcast storms
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▸ Use per switch broadcast sequence numbers

Hardware-based notifications 

Avoid broadcast storms
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▸ Use per switch broadcast sequence numbers

▸ Send notification duplicates

▸ Use maximum priority queues

Hardware-based notifications 

Avoid broadcast storms

Require reliable communication 
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Goal

Challenges

Hardware-based computation 
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e.g. path vector

Goal

Challenges

Hardware-based computation 

Run distributed routing  
algorithms in hardware
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e.g. path vector

Goal

Challenges

Hardware-based computation 

Run distributed routing  
algorithms in hardware

Computation logic is limited 

Resources are heavily limited
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B C DA
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prefix-to-  
index

link cost

A

port cost path

…
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C
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B C DA
1

0output port

prefix-to-  
index

link cost

A statically  
configured

port cost path

…
50

50 1 3 [A B C D]

forwarding state

stored in registers

11

10

Statically configured tables map prefixes to  
registers in memory 

C
10
1

1

maps prefixes 
 to registers

destination 
network 
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B C DA
1

0output port

prefix-to-  
index

link cost

A statically  
configured

port cost path

…
50

50 1 3 [A B C D]

forwarding state

stored in registers

11

10

Registers store best paths and  
its attributes 

C
10
1

1

maps prefixes 
 to registers

only store the best path 
and its attributes

destination 
network 
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B C DA
1

0output port

prefix-to-  
index

link cost

A
…

50
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10

Switches periodically advertise vectors 
to neighbors 

C
10
1
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destination path
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cost

0 [A]

periodically 
advertise vectors

port cost path

50 -1 ∞ Ø

forwarding state
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50 0 10 [A D]
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B C DA
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B C DA
1

0output port

11
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Switches periodically advertise vectors 
to neighbors 

1

destination path
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cost
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B C DA
1

0output port

prefix-to-  
index

link cost

A statically  
configured

port cost path

…
50
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forwarding state
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Computing new forwarding state  
after a a link failure 
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B C DA

destination path

1

0output port

prefix-to-  
index

link cost
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port cost path

…
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B C DA
1

0output port

data-plane-generated  
path-vector

prefix-to-  
index

link cost

A statically  
configured

port cost path

…
50
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forwarding state

stored in registers
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dynamically 
computed

If (10 + 0) < ∞

50 0 10 [A D]

C
10
1link failure

Computing new forwarding state  
after a a link failure 



Does it actually work?   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Does it actually work?   
Yes! 
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Hardware-Accelerated P4 prototype  

Compiled it to bmv2

2000 lines of P4 code

Implementation

Capabilities

Implemented in P416

path-vector routing
▸ Intra-domain destinations

▸ Inter-domain destinations
BGP-like route selection
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We tested our implementation in a real case study  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Only the internal switches run the  
hardware-based control plane 
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Each switch is connected to an external  
peer or customer 
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We generate two TCP flows 
from AS1 and AS2 
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data plane 

control plane 

hardware 
based CPBIRD

Quagga

FRRouting

OVS ASIC

VPP
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FPGAClick

Software  Hardware 

Software  Hardware 

is it a good 
idea?



Programmable hardware is great but…  
not limitless 
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Some tasks cannot be offloaded

Others might not be even desirable !

Programmable hardware is great but…  
not limitless 
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Some tasks cannot be offloaded

Others might not be even desirable !

Reliable protocols
e.g. TCP  would require too many resources !

Poor scalability of control plane tasks
hardware memory is scare and expensive

Programmable hardware is great but…  
not limitless 



Can we have the best  
of both worlds? 
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HW/SW 
codesign

Can we have the best  
of both worlds? 
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Hardware-software codesign 
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Hardware-software codesign 
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Specification Optimization
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Hardware-software codesign 
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Specification Optimization Synthesis
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We showed that programmable data 
planes can run control plane tasks

Software  Hardware 
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We identified an unexploited 
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Summary 
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We showed that programmable data 
planes can run control plane tasks

We plan on leveraging HW/SW codesign 
to explore design tradeoffs

Software  Hardware 

Opportunity!

min
n

∑
i=1

Costi( . )

max
n

∑
i=1

Per for m ancei( . )
Costi( . )

Per for m ancei( . )

We identified an unexploited 
opportunity
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