Hardware-Accelerated Network Control Planes

Edgar Costa Molero⁽¹⁾, Stefano Vissicchio⁽²⁾, Laurent Vanbever⁽¹⁾

> (1)ETHzürich

(2)

Modern networks architectures are split in (at least) two planes

Modern networks architectures are split in (at least) two planes

data plane

control plane

Network planes can be implemented in both software or hardware

data plane

Software

control plane

Software

Hardware

Existing data plane implementations cover the entire software/hardware spectrum

control plane

Hardware

Hardware

What about the control plane ?

control plane

Software

VPP FPGA DPDK ASIC

Hardware

Hardware

Control plane implementations make seldom use of the hardware resources

1 React

It can take up to a minute to detect normal failures

React

2 Compute

~1.5 minutes to converge the control plane of an IXP route server

React

2 Compute

3 Update

O(100us) to update a forwarding entry

Modern programmable devices can perform computations on billions of packets per second

Modern programmable devices can perform computations on billions of packets per second

- Read & modify packet headers e.g. to update network state
- Basic operations e.g. min & max
- Keep state e.g. to save best paths
- Add or remove custom headers e.g. to carry routing information

Main tasks to compute forwarding state are...

1 Sensing

monitors network to detect changes

24

Main tasks to compute forwarding state are...

Sensing

2 Notification

exchanges with network devices all the information learnt

25

Main tasks to compute forwarding state are...

Sensing

2 Notification

3 Computation

Computes forwarding paths when network changes are detected

Updates the data plane accordingly

Goal

Challenges

27

Challenges

Detect both hard and gray failures

28

Goal

Challenges

Detect both hard and gray failures e.g. random drop, TCAM bit flips

29

Detect both hard and gray failures Goal e.g. random drop, TCAM bit flips

Challenges

Basic hello-based mechanisms are not enough

Switches synchronously exchange packet counts

Switches synchronously exchange packet counts

32

Upstream switch starts probing campaigns

33

Traffic for some prefixes gets dropped

34

Downstream switch sends counters to upstream

35

Upstream switch detects the failure by comparing counters

Goal

Challenges

37

Goal

Implement a broadcast notification mechanism in hardware

Challenges

38

Implement a broadcast notification mechanism in hardware

Challenges

Avoid broadcast storms Require reliable communication

39

Avoid broadcast storms

Use per switch broadcast sequence numbers

Avoid broadcast storms

• Use per switch broadcast sequence numbers

Require reliable communication

Send notification duplicates Use maximum priority queues

Hardware-based computation

Goal

Challenges

Hardware-based computation

Goal

Run distributed routing algorithms in hardware e.g. path vector

Challenges

Hardware-based computation

algorithms in hardware

e.g. path vector

Challenges

- Run distributed routing

Computation logic is limited Resources are heavily limited

Statically configured tables map prefixes to registers in memory

Registers store best paths and its attributes

Switches periodically advertise vectors to neighbors

Switches periodically advertise vectors to neighbors

Switches periodically advertise vectors to neighbors

Computing new forwarding state after a a link failure

Computing new forwarding state after a a link failure

Computing new forwarding state after a a link failure

Does it actually work?

Does it actually work? Yes!

Hardware-Accelerated P4 prototype

Implementation

- Implemented in P4₁₆
- Compiled it to bmv2
- 2000 lines of P4 code

Capabilities

- Intra-domain destinations path-vector routing
- Inter-domain destinations **BGP-like route selection**

We tested our implementation in a real case study

57

Only the internal switches run the hardware-based control plane

58

Each switch is connected to an external peer or customer

We generate two TCP flows from AS1 and AS2

Monitor traffic before the failure

Internal link fails and triggers the path-vector algorithm

Traffic S1- AS3

Internal link fails and triggers the path-vector algorithm

Traffic S1- AS3

External link failure triggers a prefix withdrawal

Traffic S1- AS3

Network computes new egress and applies new policies

Programmable hardware is great but... not limitless

68

Programmable hardware is great but... not limitless

Some tasks cannot be offloaded Others might not be even desirable !

Programmable hardware is great but... not limitless

Reliable protocols e.g. TCP would require too many resources !

Poor scalability of control plane tasks hardware memory is scare and expensive

Some tasks cannot be offloaded Others might not be even desirable !

Can we have the best of both worlds?

Can we have the best of both worlds?

HW/SW codesign

72

Hardware-software codesign

Optimization

Synthesis

74

Hardware-software codesign

Synthesis

75

Hardware-software codesign

Summary

We identified an unexploited opportunity

Summary

We identified an unexploited opportunity

We showed that programmable data planes can run control plane tasks

Summary

We identified an unexploited opportunity

We showed that programmable data planes can run control plane tasks

We plan on leveraging HW/SW codesign to explore design tradeoffs

