
Hardware-Accelerated
Network Control Planes

Edgar Costa Molero(1),

Stefano Vissicchio(2), Laurent Vanbever(1)

(2)(1)

http://nsg.ee.ethz.ch

Modern networks architectures are

split in (at least) two planes

 2

 3

Modern networks architectures are

split in (at least) two planes

data plane

control plane

 4

Network planes can be implemented in both 
software or hardware

data plane

control plane

Software Hardware

Software Hardware

Existing data plane implementations cover the entire

software/hardware spectrum

 5

data plane
OVS ASIC

VPP

DPDK

FPGA

control plane

Click

Software Hardware

Software Hardware

 6

What about the control plane ? 

data plane

control plane

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

Control plane implementations make

seldom use of the hardware resources

 7

data plane

control plane
BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

 8

data plane

control plane
BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

 9

data plane

control plane
BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

Not explored

 10

data plane

control plane
BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

Do we care?

Even state-of-the-art software control planes 
have room for improvement

 11

Even state-of-the-art software control planes 
have room for improvement

 12

React1 It can take up to a minute  
to detect normal failures

Even state-of-the-art software control planes 
have room for improvement

 13

React1

Compute2 ~1.5 minutes to converge the
control plane of an IXP route server

Even state-of-the-art software control planes 
have room for improvement

 14

React1

Compute2

Update3 O(100us) to update a forwarding 
entry

 15

data plane

control plane
BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

Do we care?

 16

data plane

control plane
BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

Yes!

 17

data plane

control plane
BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

Can we do something 
about it?

Modern programmable devices can perform  
computations on billions of packets per second

 18

Modern programmable devices can perform  
computations on billions of packets per second

 19

Read & modify packet headers
e.g. to update network state

Basic operations
e.g. min & max

Add or remove custom headers
e.g. to carry routing information

Keep state
e.g. to save best paths

 20

data plane

control plane
BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

Can we do something 
about it?

 21

data plane

control plane
BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

Yes!

 22

data plane

control plane

hardware 
based CP

Step 1

BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

 23

data plane

control plane
 HW/SW Codesign

Step 2

BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

 24

Sensing1 monitors network  
to detect changes

Main tasks to compute  
forwarding state are…

 25

Sensing1

Notification2

Main tasks to compute  
forwarding state are…

exchanges with network devices
all the information learnt

 26

Sensing1

Notification2

Computation 3

Main tasks to compute  
forwarding state are…

Computes forwarding paths  
when network changes are detected

Updates the data plane  
accordingly

 27

Hardware-based network sensing 

Goal

Challenges

 28

Detect both hard and gray failures

Hardware-based network sensing 

Goal

Challenges

 29

Detect both hard and gray failures

Hardware-based network sensing 

Goal

e.g. random drop, TCAM bit flips

Challenges

 30

Hardware-based network sensing 

Goal

Challenges Basic hello-based mechanisms are not enough

Detect both hard and gray failures Goal

e.g. random drop, TCAM bit flips

 31

A B

Switches synchronously exchange  
packet counts

 32

A B

destination

counter

detection state

stored in registers

Switches synchronously exchange  
packet counts

0

0

0

0

0

0

counter

destination

 33

A B

start  
counting

stop  
counting

traffic

destination

received & forwarded packets

detection state

stored in registers

Upstream switch starts probing  
campaigns

0

0

0

0

0

0

sent packets

destination

 34

A B

start  
counting

stop  
counting

traffic

destination

received & forwarded packets

detection state

stored in registers

Traffic for some prefixes  
gets dropped

0

0

0

0

0

0

sent packets

destination

red packets  
get dropped 

 35

A B

start  
counting

stop  
counting

traffic

destination

received & forwarded packets

detection state

stored in registers

send counters & compare

Downstream switch sends counters 
to upstream

0

2

2

3

2

2

sent packets

destination

 36

A B

start  
counting

stop  
counting

traffic

destination

received & forwarded packets

detection state

stored in registers

send counters & compare

Upstream switch detects the failure  
by comparing counters

0

2

2

3

2

2

sent packets

destination

Hardware-based notifications 

 37

Goal

Challenges

Hardware-based notifications 

 38

Implement a broadcast notification 
mechanism in hardware

Goal

Challenges

Hardware-based notifications 

 39

Implement a broadcast notification 
mechanism in hardware

Goal

Challenges

Require reliable communication

Avoid broadcast storms

 40

▸ Use per switch broadcast sequence numbers

Hardware-based notifications 

Avoid broadcast storms

 41

▸ Use per switch broadcast sequence numbers

▸ Send notification duplicates

▸ Use maximum priority queues

Hardware-based notifications 

Avoid broadcast storms

Require reliable communication

 42

Goal

Challenges

Hardware-based computation

 43

e.g. path vector

Goal

Challenges

Hardware-based computation

Run distributed routing  
algorithms in hardware

 44

e.g. path vector

Goal

Challenges

Hardware-based computation

Run distributed routing  
algorithms in hardware

Computation logic is limited

Resources are heavily limited

 45

B C DA
1

0output port

prefix-to-  
index

link cost

A

port cost path

…
50

50 1 3 [A B C D]

forwarding state

stored in registers

11

10

C
10
1

1

 46

B C DA
1

0output port

prefix-to-  
index

link cost

A statically  
configured

port cost path

…
50

50 1 3 [A B C D]

forwarding state

stored in registers

11

10

Statically configured tables map prefixes to  
registers in memory

C
10
1

1

maps prefixes 
 to registers

destination 
network

 47

B C DA
1

0output port

prefix-to-  
index

link cost

A statically  
configured

port cost path

…
50

50 1 3 [A B C D]

forwarding state

stored in registers

11

10

Registers store best paths and  
its attributes

C
10
1

1

maps prefixes 
 to registers

only store the best path 
and its attributes

destination 
network

 48

B C DA
1

0output port

prefix-to-  
index

link cost

A
…

50

11

10

Switches periodically advertise vectors 
to neighbors

C
10
1

1

destination path

0 [A]

cost

0 [A]

periodically 
advertise vectors

port cost path

50 -1 ∞ Ø

forwarding state

stored in registers

dynamically 
computed

If (10 + 0) < ∞

50 0 10 [A D]

 49

B C DA
1

0output port

prefix-to-  
index

link cost

A

port cost path

…
50

50 0 10 [A D]

forwarding state

stored in registers

11

10

Switches periodically advertise vectors 
to neighbors

C
10
1

1

destination path

1 [A]

cost

 50

B C DA
1

0output port

11

10

Switches periodically advertise vectors 
to neighbors

1

destination path

2 [A]

cost

prefix-to-  
index

link cost

A statically  
configured

…
50

dynamically 
computed

If (2 + 1) < 10

50 1 3

C
10
1

port cost path

50 0 10 [A D]

forwarding state

stored in registers
[A B C D]

 51

B C DA
1

0output port

prefix-to-  
index

link cost

A statically  
configured

port cost path

…
50

50 1 3 [A B C D]

forwarding state

stored in registers

11

10

Computing new forwarding state  
after a a link failure

C
10
1link failure

 52

B C DA

destination path

1

0output port

prefix-to-  
index

link cost

A statically  
configured

port cost path

…
50

50 1 3 [A B C D]

forwarding state

stored in registers

11

10

∞ Ø

dynamically 
computed

Computing new forwarding state  
after a a link failure

50 -1 ∞

C
10
1

Ø

costlink failure

 53

B C DA
1

0output port

data-plane-generated  
path-vector

prefix-to-  
index

link cost

A statically  
configured

port cost path

…
50

50 -1 ∞ Ø

forwarding state

stored in registers

11

10

0 [A]

dynamically 
computed

If (10 + 0) < ∞

50 0 10 [A D]

C
10
1link failure

Computing new forwarding state  
after a a link failure

Does it actually work?  

 54

Does it actually work?  
Yes!

 55

 56

Hardware-Accelerated P4 prototype  

Compiled it to bmv2

2000 lines of P4 code

Implementation

Capabilities

Implemented in P416

path-vector routing
▸ Intra-domain destinations

▸ Inter-domain destinations
BGP-like route selection

 57

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

We tested our implementation in a real case study  

 58

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

Only the internal switches run the  
hardware-based control plane

 59

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

Each switch is connected to an external  
peer or customer

 60

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

We generate two TCP flows 
from AS1 and AS2

 61

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

LLnk (S1-AS3)

)low from AS1)low from AS2

LLnk (S5-AS5)

time [s]

Bandwidth  
[Mbps]

0 4.8 15 25

0

10

4

6

Monitor traffic before the failure

Traffic S1- AS3

 62

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

(1) internal Link
failure

LLnk (S1-AS3)

)low from AS1)low from AS2

LLnk (S5-AS5)

time [s]

Bandwidth  
[Mbps]

0 4.8 15 25

S2 to S3  
link failure

0

10

4

6

Internal link fails and triggers 
the path-vector algorithm

Traffic S1- AS3

 63

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

(1) internal Link
failure

LLnk (S1-AS3)

)low from AS1)low from AS2

LLnk (S5-AS5)

time [s]

Bandwidth  
[Mbps]

0 4.8 15 25

S2 to S3  
link failure

0

10

4

6

Traffic S1- AS3

Internal link fails and triggers 
the path-vector algorithm

 64

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

(1) internal Link
failure

(2) external
Link failure

(3) prefix x
withdrawal

LLnk (S1-AS3)

)low from AS1)low from AS2

LLnk (S5-AS5)

time [s]

Bandwidth  
[Mbps]

0 4.8 15 25

S2 to S3  
link failure

withdrawal

0

10

4

6

Traffic S1- AS3

External link failure triggers a  
prefix withdrawal

 65

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

(1) internal Link
failure

(2) external
Link failure

(3) prefix x
withdrawal

(4) BGP export 
policy violation

LLnk (S1-AS3)

)low from AS1)low from AS2

LLnk (S5-AS5)

time [s]

Bandwidth  
[Mbps]

0 4.8 15 25

withdrawal

0

10

4

6

Network computes new egress 
and applies new policies

Traffic S5- AS5

 66

data plane

control plane

hardware 
based CP

Step 1

BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

 67

data plane

control plane

hardware 
based CPBIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

is it a good
idea?

Programmable hardware is great but…  
not limitless

 68

 69

Some tasks cannot be offloaded

Others might not be even desirable !

Programmable hardware is great but…  
not limitless

 70

Some tasks cannot be offloaded

Others might not be even desirable !

Reliable protocols
e.g. TCP would require too many resources !

Poor scalability of control plane tasks
hardware memory is scare and expensive

Programmable hardware is great but…  
not limitless

Can we have the best  
of both worlds?

 71

 72

HW/SW 
codesign

Can we have the best  
of both worlds?

 73

data plane

control plane
 HW/SW Codesign

Step 2

BIRD

Quagga

FRRouting

OVS ASIC

VPP

DPDK

FPGAClick

Software Hardware

Software Hardware

Hardware-software codesign

 74

Specification Optimization Synthesis

functions

Costi(.)

Performancei(.)

constraints

Software

Hardware

problem 
graph

mapping  
set

architecture  
graph

∀i:
 pred(i)<100

Hardware-software codesign

 75

Specification Optimization

functions min
n

∑
i=1

Costi(.)

max
n

∑
i=1

Performancei(.)
Costi(.)

constraints

Software

Hardware

problem 
graph

mapping  
set

architecture  
graph

∀i:
 pred(i)<100

Software

Hardware

Software

Hardware

 cost(x):120

 perf(x):200

 cost(y):80

 perf(y):200

Synthesis

Performancei(.)

Hardware-software codesign

 76

Specification Optimization Synthesis

Software

Hardware

functions

runtime  
API

configurations P4 code

min
n

∑
i=1

Costi(.)

max
n

∑
i=1

Performancei(.)
Costi(.)

constraints

Software

Hardware

problem 
graph

mapping  
set

architecture  
graph

configurations C/C++

∀i:
 pred(i)<100

Software

Hardware

Software

Hardware

 cost(x):120

 perf(x):200

 cost(y):80

 perf(y):200

Performancei(.)

Summary

 77

We identified an unexploited
opportunity

Software Hardware

Opportunity!

Summary

 78

We showed that programmable data
planes can run control plane tasks

Software Hardware

Opportunity!

We identified an unexploited
opportunity

Summary

 79

We showed that programmable data
planes can run control plane tasks

We plan on leveraging HW/SW codesign 
to explore design tradeoffs

Software Hardware

Opportunity!

min
n

∑
i=1

Costi(.)

max
n

∑
i=1

Per for m ancei(.)
Costi(.)

Per for m ancei(.)

We identified an unexploited
opportunity

 80

