

Why is this so hard?

Limited resources
Programmer Switch
high-level P4 code

Compiler

Who should fix this?

Who should fix this?

Compiler

Who should fix this?

Knows intended functionality

Compiler

Ignores hardware specifics

Who should fix this?

Compiler

Knows hardware constraints
Assumes all possible inputs

Knows intended functionality
Ignores hardware specifics

There is a gap between the programmer and the compiler

Compiler

Knows intended functionality
Ignores hardware specifics

Knows hardware constraints
Assumes all possible inputs

P2GO bridges the gap between the programmer and the compiler

Compiler P2GO

Knows hardware constraints
Assumes all possible inputs

Knows intended functionality
Ignores hardware specifics

P2GO optimizes the P4 programs for the expected case

Compiler P2GO

Knows hardware constraints

P4’

Assumes all possible inputs
Knows intended functionality
Ignores hardware specifics

P2GO uses the program’s profile to approximate the program’s
intended functionality

Compiler P2GO

Knows hardware constraints

Profile

Assumes all possible inputs

P4’

Knows intended functionality
Ignores hardware specifics

Compiler P2GO

P2GO probes the compiler to check that P4’ uses less hardware resources

P4’

Hardware
allocation

Profile

P2GO asks the programmer to verify that P4’ satisfies the intended
functionality

Compiler P2GO
Observation

P4’

P4’

Profile

Patrick Wintermeyer Alexander Dietmüller Laurent Vanbever Maria Apostolaki

P2GO: P4 Profile-Guided Optimizations

Profiling a P4 program

Optimization 1: remove fake dependencies

Optimization 2: reduce resource waste

Optimization 3: improve hardware-software split

Preliminary evaluation

Open research questions

P2GO: P4 Profile-Guided Optimizations

P2GO: P4 Profile-Guided Optimizations

Profiling a P4 program

Optimization 1: remove fake dependencies

Optimization 2: reduce resource waste

Optimization 3: improve hardware-software split

Preliminary evaluation

Open research questions

What is the program’s profile?

…is a description of the program’s behavior during runtime

What is the program’s profile?

…is a description of the program’s behavior during runtime

…contains the control paths that packets
of a realistic traffic trace take in the program’s control logic

What is the program’s profile?

…is a description of the program’s behavior during runtime

…contains the control paths that packets
of a realistic traffic trace take in the program’s control logic

What is the program’s profile?

What is the program’s profile?

Hot code segment

Mutually-exclusive actions

Program Profile-based observations

P2GO obtains the profile offline

To obtain the profile P2GO first instruments the P4 program

To obtain the profile P2GO first instruments the P4 program

Header
Header This packet passed

though actions
X, Y, Z. . .

Profiling Header

To obtain the profile P2GO first instruments the P4 program

pcap pcap

Next P2GO runs it on a traffic trace and collects the output

pcap pcap

The profile contains the hit rate of each action and
the non-mutually exclusive actions

Profile

P2GO uses three profile-guided optimizations
to reduce the number of stages occupied by a P4 program

Remove fake dependencies reduce memory usage migrate code segments to software

Reduce resource
waste

Increase
pipeline concurrency

P2GO uses three profile-guided optimizations
to reduce the number of stages occupied by a P4 program

Improve hardware-
software split

Remove fake dependencies reduce memory usage migrate code segments to software

The programmer implements a program in P4

If tcp.flags==SYN:
SYNFWD

If tcp.len ==13:
MAGIC_1
MAGIC_2

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
MAGIC_1
MAGIC_2
MAGIC_3

The programmer implements a program in P4

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
MAGIC_1
MAGIC_2
MAGIC_3

The programmer implements a program in P4

If tcp.flags==SYN:
SYNFWD

If tcp.len ==13:
MAGIC_1
MAGIC_2

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
MAGIC_1
MAGIC_2
MAGIC_3

The compiler maps the program to hardware using five stages

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
MAGIC_1
MAGIC_2
MAGIC_3

5 stages

Compiler

SYNFWD needs to precede the execution of MAGIC_1

To execute MAGIC_*
we need to have
results of SYNFWD.

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
MAGIC_1
MAGIC_2
MAGIC_3

Compiler

5 stages

MAGIC_2 uses more memory than is available on a single stage

Too many M&A rules.

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
MAGIC_1
MAGIC_2
MAGIC_3

Compiler

5 stages

P2GO uses the program’s profile and the compiler’s output to reduce
the number of stages used by the example program

Compiler

If tcp.flags==SYN:
 SYNFWD

If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3

P2GO

Profile

P2GO uses the profile to reduce the number of stages,
while not changing the program’s semantic

Reduce resource
waste

Increase
pipeline concurrency

Improve hardware-
software split

reduce memory usage migrate code segments to softwareremove fake dependencies

P2GO extracts the program’s dependencies from the compiler

CompilerDependencies

If tcp.flags==SYN:
 SYNFWD

If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3

P2GO

Profile

P2GO compares the profile with the dependencies of the static analysis

No packet matched both
SYNFWD & MAGIC_1.

P2GO CompilerDependencies

If tcp.flags==SYN:
 SYNFWD

If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3

Profile

P2GO automatically generates a new program with the dependency resolved

Compiler

No packet matched both
SYNFWD & MAGIC_1.

If tcp.flags==SYN:
 SYNFWD

Else If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3

P4’

P2GO

P2GO verifies that the change will reduce the hardware allocation

Compiler1 stage less

No packet matched both
SYNFWD & MAGIC_1.

If tcp.flags==SYN:
 SYNFWD

Else If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3

P4’

P2GO

P2GO asks the programmer to accept the modification,
explaining the profile-based observation that triggered it

Compiler

If tcp.flags==SYN:
 SYNFWD

Else If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3

P2GO

If you are sure that SYNFWD & MAGIC_1
are never applied to the same packet you

can gain a stage.

The programmer examines and accepts the modification

If you are sure that SYNFWD & MAGIC_1
are never applied to the same packet you

can gain a stage.

Ah yes, SYN packets have
zero payload

Compiler

If tcp.flags==SYN:
 SYNFWD

Else If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3

P2GO

P2GO uses the profile to reduce the number of stages,
while not changing the program’s semantic

Reduce resource
waste

Increase
pipeline concurrency

Improve hardware-
software split

remove fake dependencies reduce memory usage migrate code segments to software

P2GO fetched the most seldom used tables from the profile

MAGIC_2 is seldom used

With 2% less memory for MAGIC_2
then you can save a stage.

P2GO

MAGIC_3 is seldom used

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3

Profile

P2GO generates programs with reduced memory and resubmits them

MAGIC_2 is seldom used

CompilerP2GO

MAGIC_3 is seldom used

1 stage less

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3

Smaller Magic_2P4’

Smaller Magic_3
0 stage less

P4’’

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3

P2GO repeats the process to find the minimum change to save a stage

MAGIC_2 is seldom used

CompilerP2GO

MAGIC_3 is seldom used

2% less mem
saves 1 stage

-5%
-1%

-2%

P2GO asks the programmer whether he would accept the reduction

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3

MAGIC_2 is seldom used
MAGIC_3 is seldom used

With 2% less memory for MAGIC_2
you can save a stage.

CompilerP2GO
2% less mem
saves 1 stage

-5%
-1%

-2%

The programmers considers and accepts the change

Ah sure that was a rough
estimate anyway.

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3

MAGIC_2 is seldom used
MAGIC_3 is seldom used

P2GO Compiler
2% less mem
saves 1 stage

-5%
-1%

-2%

With 2% less memory for MAGIC_2
you can save a stage.

P2GO uses the profile to reduce the number of stages,
while not changing the program’s semantic

Reduce resource
waste

Increase
pipeline concurrency

Improve hardware-
software split

reduce memory usage migrate code segments to softwareremove fake dependencies

P2GO fetches the least-used self-contained segment

MAGIC_3 is self-contained
& seldom used.

P2GO

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3

P2GO generates a program without MAGIC_3
that sends the corresponding packets to the controller

CompilerP2GO 1 stage less

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3 MAGIC_2 is self-contained

& seldom used.

P4’

CompilerP2GO 1 stage less

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3 MAGIC_3 is self-contained

& seldom used.

MAGIC_3 is seldom used and self-contained,
by moving it to software you can save a stage.

P4’

P2GO generates a program without MAGIC_3
that sends the corresponding packets to the controller

CompilerP2GO 1 stage less

If tcp.flags==SYN:
SYNFWD

If tcp.len >10:
 MAGIC_1
 MAGIC_2
 MAGIC_3 MAGIC_3 is self-contained

& seldom used.

Ah no! MAGIC_3 will stay in the data
plane. The traffic trace used for

profiling happened to not contain
such traffic.

MAGIC_3 is seldom used and self-contained,
By moving it to software you can save a stage.

P4’

P2GO generates a program without MAGIC_3
that sends the corresponding packets to the controller

P2GO uses the profile to reduce the number of stages,
while not changing the program’s semantic

Reduce resource
waste

Increase
pipeline concurrency

Improve hardware-
software split

reduce memory usage migrate code segments to softwareremove fake dependencies

P2GO: P4 Profile-Guided Optimizations

Profiling a P4 program

Optimization 1: remove fake dependencies

Optimization 2: reduce resource waste

Optimization 3: improve hardware-software split

Preliminary evaluation

Open research questions

P2GO working alongside the Tofino compiler reduces the
pipeline length of realistic examples

Example Used
Optimization

Stages
Before

Stages
After

NAT & GRE Removing
Dependencies 4 3

Sourceguard Reducing
Memory 5 4

Failure
Detection

Offloading
Code 4 2

P2GO: P4 Profile-Guided Optimizations

Profiling a P4 program

Optimization 1: remove fake dependencies

Optimization 2: reduce resource waste

Optimization 3: improve hardware-software split

Preliminary Evaluation

Open research questions

Representative traffic trace

Semantic equivalence

Open research questions

Optimize across multiple dimensions

Mis-speculation

Open research questions

How can we find a representative
traffic trace? Would the problem be
solved with online profiling?

Representative traffic trace

Semantic equivalence

Optimize across multiple dimensions

Mis-speculation

Open research questions

Can we ensure that the optimized
program is semantically equivalent
without involving the programmer?

Representative traffic trace

Semantic equivalence

Optimize across multiple dimensions

Mis-speculation

Open research questions

How to detect and mitigate
inaccuracies of the profile or
of the programmer?

Representative traffic trace

Semantic equivalence

Optimize across multiple dimensions

Mis-speculation

Open research questions

What if a program does not compile due to
other resources ? How to optimize the
program across multiple dimensions?

Representative traffic trace

Semantic equivalence

Optimize across multiple dimensions

Mis-speculation

P2GO: P4 Profile-Guided Optimizations P2GO

Compiler P2GO
#stages

Profile-based
Observation

P4“

P4“

P4“

pcap

Profile

1

2

3

4

5

