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We can divide routing into 

four main tasks

compute

detect

notify

network changes

remote devices of the changes

new paths

update the local forwarding state

while(true); do



Except for notifying, 

all tasks can take minutes to complete



In the worst-case, 

it can take >1 min to…



detect

In the worst-case, 

it can take >1 min to…

remote Internet failures
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compute

detect remote Internet failures

the routing state for 100,000s destinations

In the worst-case, 

it can take >1 min to…



compute

detect remote Internet failures

the routing state for 100,000s destinations

update 100,000s of forwarding entries

In the worst-case, 

it can take >1 min to…
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There exists a wide variety of scheduling policies, 

optimizing for a wide variety of objectives



Minimize tail latency

Minimize flow completion times

Enforce max-min fairness

SIGCOMM'92

SIGCOMM'13

NSDI'15

ToN'93

NSDI'18

+ many more



Quite unfortunately… 

a universal scheduling algorithm does not exist
NSDI'16



The need for diversity    lack of generality 

motivates the need for flexible scheduling



everythingYou can’t have you want…

The need for diversity    lack of generality 

motivates the need for flexible scheduling



everything

anythingbut you can have

You can’t have you want…

you want

The need for diversity    lack of generality 

motivates the need for flexible scheduling



Fast routing

Programmable, hardware-based 

Routing and Scheduling

Flexible scheduling

Looking forward

data-plane offloading

routing | forwarding

dynamic packet adaptation

1

2

3



Fast routing

Programmable, hardware-based 

Routing and Scheduling

Flexible scheduling

Looking forward

data-plane offloading

routing | forwarding

dynamic packet adaptation

1



compute

detect

notify

network changes

remote devices of the changes

new paths

update the local forwarding state

What about we…

…in hardware?!



compute

detect

notify

network changes

remote devices of the changes

new paths

update the local forwarding state

What about we…

…in hardware?!



While the control plane can take minutes to learn about a failure, 

the traffic itself is instantaneously affected



What about we track this signal instead?

While the control plane can take minutes to learn about a failure, 

the traffic itself is instantaneously affected



Internet traffic end-points retransmit packets  

upon experiencing packet drops



… …

source destination



… …
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source destination
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A:1000

… …

S:500

source destination

failure
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t + 200 ms

S:1000

A:1000

failure
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S:1000

… …

retransmission
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Many end points retransmitting simultaneously leads to 

waves of retransmission
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failure aftecting 100k flows
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2nd wave
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3rd wave
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Tracking this signal in the data plane is challenging

Signal is noisy

requires per-connection tracking

Signal fades away

Signal is composed of many small ones

packets loss is routinely observed

due to the exponential backoff

Challenges



The signal quickly fades away as  

subsequent waves spread over longer periods of time

2 3 4 5 60 7 81

time (sec)

# of retransmissions

0

10k

20k

30k

40k

50k

60k

70k



To solve these challenges, we consider a subset of the signal 

for which we maximize the signal-to-noise ratio



Signal is noisy

Rely on scalable data structures and sampling

Signal fades away

Signal is composed of many small ones

Focus on retransmissions due to bursty losses

Focus on active flows

Solutions

To solve these challenges, we consider a subset of the signal 

for which we maximize the signal-to-noise ratio



Traffic-driven failure inference is accurate 

the inference accuracy is >80% in most cases
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Traffic-driven failure inference is fast 
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Traffic-driven failure inference is fast 

Inference is made <1s in most cases
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notify

network changes

remote devices of the changes

new paths

update the local forwarding state

What about we…

…in hardware?!



Switches can compute and update their forwarding state 

in hardware, without a controller



Let me show you how (in P4)

Switches can compute and update their forwarding state 

in hardware, without a controller



B C DA
1

0

11

10

1

destination 
network

output port
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B C DA 11

10

1

Use registers to store 

the best paths and their attributes

forwarding state 

stored in registers

port cost path1

0
updatable @ runtimei



B C DA

A
…

50

11

10

C
10
1

1

Use tables to store link costs and to 

map destinations to their register entries 

prefix-to- 
index

link cost

controller- 

provisioned

1

0

forwarding state 

stored in registers

port cost path

50



B C DA

A
…

50

11

10

C
10
1

1

Let the switches flood their forwarding state, 

one destination at time

forwarding state 

stored in registers

port cost path

prefix-to- 
index

link cost

1

0
50 -1 ∞ Ø



B C DA 11

10

1 1

0

destination path

0 [A]

cost

0 [A]
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B C DA
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Upon receiving a routing message,  

have the switches recompute their forwarding state

forwarding state 

stored in registers

port cost path

prefix-to- 
index

link cost

1

0
50 -1 ∞ Ø

dynamically 
computed

if(10+0) < ∞

50 0 10 [A D]0 [A]



B C DA

A
…

50

11

10

C
10
1

1

forwarding state 

stored in registers

port cost path

prefix-to- 
index

link cost

1

0
50 0

dynamically 
computed

if(2+1) < 10

50 1 3 [A B C D]

[A D]10

Upon receiving a routing message,  

have the switches recompute their forwarding state

[A,B,C]2



We have a working P416 prototype 

Tofino implementation coming up

run on software model (bmv2)

>2000 lines of code

path-vector routing (a la RIP)

Intra-domain destinations

Inter-domain destinations
policy-based routing (a la BGP)

Implementation

Capabilities
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Offloading routing tasks does not come for free 

It is not always a good idea—think first!

Some tasks cannot be offloaded

Some tasks should probably not be offloaded

Offloading routing tasks consumes hardware ressources

e.g. crypto operations

e.g. implementing the entire BGP/TCP protocol

and those cannot be reused for other applications…
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The need for diversity    lack of generality 

motivates the need for flexible scheduling



Push-In First-Out Queue (PIFO) is a data structure  

that enables programmable packet scheduling
SIGCOMM'16



A PIFO queue…

perfectly reorders packets according to their ranks

drains packets from the head

Push-In First-Out Queue (PIFO) is a data structure  

that enables programmable packet scheduling
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PIFO queueIncoming  

packets
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15 4 4 3 2

PIFO queue Outgoing 

packets



How exactly?

Push-In First-Out Queue (PIFO) is a data structure  

that enables programmable packet scheduling



15 4 4 3

PIFO queue 
fixed

Incoming  
packets

Rank computation logic 
programmable

1

Programmable Scheduler

f = flow(p) 

p.rank = f.size

434 5 15 4 4 3

Outgoing  
packets

ranked packets

Implementing a new algorithm simply requires  

to adapt the rank computation logic



Implementing PIFO queues in hardware is challenging

assumes monotonically increasing ranks

supports ~1k flows and ~10 Gbps

implementing ASICs takes yearsDeployability

Scalability

Flexibility

Existing proposal…

Moreover…



Can we approximate PIFO queues…

at line rate;

at scale;

on existing devices?
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at scale;
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Yep!



Can we approximate PIFO queues…

at line rate;

at scale;

on existing devices?

Yep!

Introducing SP-PIFO



SP-PIFO approximates PIFO queues using 

strict-priority queues and a dynamic mapping strategy
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5 4 4

high priority

low

SP-PIFO approximates PIFO queues using 

strict-priority queues and a dynamic mapping strategy

3 1 12



when scanning bottom-up

3

1 2 1

3

1

4

5 4 4

queue mapping policy: enqueues if rank ≥ queueidx

SP-PIFO approximates PIFO queues using 

strict-priority queues and a dynamic mapping strategy



If there are as many queues as ranks, 

SP-PIFO is equivalent to PIFO

1434 5 2

1

3

4

2 4 1234

3

44

2

1

exactly one rank per queue



In practice though,  

number of ranks >> number of queues

3

1 2 1

3

1

4

5 4

1215 34

3 queues

5 ranks



Different ranks share the same queues 

ranks {1,2} and ranks {4,5}

3

1 2 1

3

1

4

5 4

1215 34



Depending on the packets order, having distinct ranks  

in one queue can lead to scheduling errors
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We can minimize the number of scheduling errors 

by dynamically adapting the mapping policy
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We can minimize the number of scheduling errors 

by dynamically adapting the mapping policy

234

3

✓
PIFO-compliant

1234

mapping policy q* = [1,2,3] ✓



Adaptation strategy

SP-PIFO:

Implementation

Evaluation

how does it work?

how well does it perform?

how can it be deployed?

1

2

3
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Using Strict-Priority Queues
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optimal 
mapping policy

expected loss across all ranks 
"unpifoness"

Finding an optimal mapping policy is  

an optimization problem



optimal 
mapping policy

Solving this optimization problem  

exactly is intractable unfortunately

unknown packet rank 
distributions

expected loss across all ranks 
"unpifoness"



We can approximate the solution by turning the problem 

into an online empirical risk minimization problem



We can approximate the solution by turning the problem 

into an online empirical risk minimization problem

enqueued 
 packets

estimated 
unpifoness

online 
mapping policy



SP-PIFO dynamically adapts the mapping policy  

on a per-packet basis, in two phases



SP-PIFO dynamically adapts the mapping policy  

on a per-packet basis, in two phases

phase 1 

push-up

gradually map higher-priority packets 

to higher-priority queues

concentrates scheduling errors 

in the highest-priority queue



SP-PIFO dynamically adapts the mapping policy  

on a per-packet basis, in two phases

shift lower-priority packets 

to lower-priority queues

phase 2 

push-down

upon scheduling error…

phase 1 

push-up

gradually map higher-priority packets 

to higher-priority queues

concentrates scheduling errors 

in the highest-priority queue
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"push-up" increase queueidx to rank(enqueued packet)
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Parser Ingress Pipeline

…

Queue Bound n

Registers

Queue Bound n-1 Queue Bound 1

Metadata

Queue ID

Queue Bound 1 - Rank

Traffic Manager

Priority Queues

We managed to program SP-PIFO on 

existing programmable data planes (Barefoot Tofino)
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How well can SP-PIFO approximate  

well-known scheduling objectives?



Enforce max-min fairness

Minimize Flow Completion Time

pFabric (8 queues)

Start-Time Fair Queuing (32 queues)

Ranks based on a fluid model

Ranks are set to the remaining flow size

Scheduling  
objectives

How well can SP-PIFO approximate  

well-known scheduling objectives?



pFabric web-search workloadRealistic 
workloads

We use a leaf-spine topology with: 

144 servers, 1/4 Gbps links

Topology

Packet-level 
simulator

Netbench [SIGCOMM 2017]
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SP-PIFO closely approximates pFabric 

minimizing FCTs for both small and big flows
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SP-PIFO approximates the behavior of PIFO queues  

at line rate, at scale and on existing devices

SP-PIFO dynamically maps packets to queues  

so as to minimize scheduling errors

SP-PIFO automatically reacts to traffic variations  

without requiring any traffic knowledge

SP-PIFO makes packet scheduling programmable… today!
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routingdefinitely not great

control plane | software | C++

data plane | hardware | P4



routinglikely an overkill

control plane | software | C++

data plane | hardware | P4



routing

how do we navigate 

this spectrum?

routing

control plane | software | C++

data plane | hardware | P4



routing

routing

what about we revisit the interface 

between the two places?

control plane | software | C++

data plane | hardware | P4



programmable 
scheduling

what cool applications 

can we build on top of  

programmable schedulers?

QoE 
enhancers?

control plane | software | C++

data plane | hardware | P4

can we design better 

adaptation strategies? 

traffic-awareness?
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Check our papers out for much more info…

SP-PIFO: Approximating Push-In First-Out Behaviors
using Strict-Priority Queues

Albert Gran Alcoz
ETH Zürich

Alexander Dietmüller
ETH Zürich

Laurent Vanbever
ETH Zürich

Abstract
Push-In First-Out (PIFO) queues are hardware primitives

which enable programmable packet scheduling by providing
the abstraction of a priority queue at line rate. However, imple-
menting them at scale is not easy: just hardware designs (not
implementations) exist, which support only about 1k flows.

In this paper, we introduce SP-PIFO, a programmable
packet scheduler which closely approximates the behavior
of PIFO queues using strict-priority queues—at line rate, at
scale, and on existing devices. The key insight behind SP-

PIFO is to dynamically adapt the mapping between packet
ranks and available strict-priority queues to minimize the
scheduling errors with respect to an ideal PIFO. We present
a mathematical formulation of the problem and derive an
adaptation technique which closely approximates the optimal
queue mapping without any traffic knowledge.

We fully implement SP-PIFO in P4 and evaluate it on real
workloads. We show that SP-PIFO: (i) closely matches PIFO,
with as little as 8 priority queues; (ii) scales to large amount of
flows and ranks; and (iii) quickly adapts to traffic variations.
We also show that SP-PIFO runs at line rate on existing hard-
ware (Barefoot Tofino), with a negligible memory footprint.

1 Introduction

Until recently, packet scheduling was one of the last bastions
standing in the way of complete data-plane programmability.
Indeed, unlike forwarding whose behavior can be adapted
thanks to languages such as P4 [7] and reprogrammable hard-
ware [2], scheduling behavior is mostly set in stone with
hardware implementations that can, at best, be configured.

To enable programmable packet scheduling, the main chal-
lenge was to find an appropriate abstraction which is flexible
enough to express a wide variety of scheduling algorithms and
yet can be implemented efficiently in hardware [22]. In [23],
Sivaraman et al. proposed to use Push-In First-Out (PIFO)
queues as such an abstraction. PIFO queues allow enqueued
packets to be pushed in arbitrary positions (according to the
packets rank) while being drained from the head.

Incoming packets sequence

already enqueued

341452

PIFO queue (theoretical)

1234452 123445

SP-PIFO (approximation)

445

312

suboptimal output

strategy A

[1–3]

[4–5]
312445

2

3445

12
strategy B

[1–2]

[3–5]

2
123445

optimal output

Figure 1: SP-PIFO approximates the behavior of PIFO queues
by adapting how packet ranks are mapped to priority queues.

While PIFO queues enable programmable scheduling, im-
plementing them in hardware is hard due to the need to ar-
bitrarily sort packets at line rate. [23] described a possible
hardware design (not implementation) supporting PIFO on
top of Broadcom Trident II [1]. While promising, realizing
this design in an ASIC is likely to take years [6], not includ-
ing deployment. Even ignoring deployment considerations,
the design of [23] is limited as it only supports ~1000 flows
and relies on the assumption that the packet ranks increase
monotonically within each flow, which is not always the case.

Our work In this paper, we ask whether it is possible to ap-
proximate PIFO queues at scale, in existing programmable
data planes. We answer positively and present SP-PIFO,
an adaptive scheduling algorithm that closely approximates
PIFO behaviors on top of widely-available Strict-Priority (SP)
queues. The key insight behind SP-PIFO is to dynamically
adapt the mapping between packet ranks and SP queues in
order to minimize the amount of scheduling mistakes relative
to a hypothetical ideal PIFO implementation.
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ABSTRACT
One design principle of modern network architecture seems
to be set in stone: a software-based control plane drives a
hardware- or software-based data plane. We argue that it is
time to revisit this principle after the advent of programmable
switch ASICs which can run complex logic at line rate.

We explore the possibility and benefits of accelerating the
control plane by offloading some of its tasks directly to the net-
work hardware. We show that programmable data planes are
indeed powerful enough to run key control plane tasks includ-
ing: failure detection and notification, connectivity retrieval,
and even policy-based routing protocols. We implement in P4
a prototype of such a “hardware-accelerated” control plane,
and illustrate its benefits in a case study.

Despite such benefits, we acknowledge that offloading
tasks to hardware is not a silver bullet. We discuss its tradeoffs
and limitations, and outline future research directions towards
hardware-software codesign of network control planes.

1 INTRODUCTION
As the “brain” of the network, the control plane is one of
its most important assets. Among other things, the control
plane is responsible for sensing the status of the network (e.g.,
which links are up or which links are overloaded), computing
the best paths along which to guide traffic, and updating
the underlying data plane accordingly. To do so, the control
plane is composed of many dynamic and interacting processes
(e.g., routing, management and accounting protocols) whose
operation must scale to large networks. In contrast, the data
plane is “only” responsible for forwarding traffic according
to the control plane decisions, albeit as fast as possible.

These fundamental differences lead to very different de-
sign philosophies. Given the relative simplicity of the data
plane and the “need for speed”, it is typically entirely imple-
mented in hardware. That said, software-based implementa-
tions of data planes are also commonly found (e.g., Open-
VSwitch [30]) together with hybrid software-hardware ones
(e.g., CacheFlow [20]). In short, data plane implementations
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cover the entire implementation spectrum, from pure software
to pure hardware. In contrast, there is much less diversity in
control plane implementations. The sheer complexity of the
control plane tasks (e.g., performing routing computations)
together with the need to update them relatively frequently
(e.g., to support new protocols and features) indeed calls for
software-based implementations, with only a few key tasks
(e.g., detecting physical failures, activating backup forward-
ing state) being (sometimes) offloaded to hardware [13, 22].

Yet, we argue that a number of recent developments are
creating both the need and opportunity for rethinking basic
design and implementation choices of network control planes.

Need There is a growing need for faster, more scalable, and
yet more powerful control planes. Nowadays, even beefed-
up and highly-optimized software control planes can only
process thousands of (BGP) control plane messages per sec-
ond [23], and can take minutes to converge upon large fail-
ures [17, 36]. Parallelizing only marginally helps: for instance,
the BGP specification [31] mandates to lock all Adj-RIBs-In
before proceeding with the best-path calculation, essentially
preventing the parallel execution of best path computations.
A concrete risk is that convergence time will keep increasing
with the network size and the number of Internet destinations.
At the same time, recent research has repeatedly shown the
performance benefits of controlling networks with extremely
tight control loops, among others to handle congestion (e.g.,
[7, 21, 29]).

Opportunity Modern reprogrammable switches (e.g., [1]) can
perform complex stateful computations on billions of packets
per second [19]. Running (pieces of) the control plane at such
speeds would lead to almost “instantaneous” convergence,
leaving the propagation time of the messages as the primary
bottleneck. Besides speed, offloading control plane tasks to
hardware would also help by making them traffic-aware. For
instance, it enables to update forwarding entries consistently
with real-time traffic volumes rather than in a random order.

Research questions Given the opportunity and the need, we
argue that it is time to revisit the control plane’s design and im-
plementation by considering the problem of offloading parts
of it to hardware. This redesign opens the door to multiple re-
search questions including: Which pieces of the control plane
should be offloaded? What are the benefits? and How can
we overcome the fundamental hardware limitations? These
fundamental limitations come mainly from the very limited
instruction set (e.g., no floating point) and the memory avail-
able (i.e., around tens of megabytes [19]) of programmable
network hardware. We start to answer these questions in this
paper and make two contributions.
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Abstract
We present Blink, a data-driven system that leverages TCP-
induced signals to detect failures directly in the data plane.
The key intuition behind Blink is that a TCP flow exhibits a
predictable behavior upon disruption: retransmitting the same
packet over and over, at epochs exponentially spaced in time.
When compounded over multiple flows, this behavior creates
a strong and characteristic failure signal. Blink efficiently
analyzes TCP flows to: (i) select which ones to track; (ii)
reliably and quickly detect major traffic disruptions; and (iii)
recover connectivity—all this, completely in the data plane.

We present an implementation of Blink in P4 together with
an extensive evaluation on real and synthetic traffic traces.
Our results indicate that Blink: (i) achieves sub-second rerout-
ing for large fractions of Internet traffic; and (ii) prevents
unnecessary traffic shifts even in the presence of noise. We
further show the feasibility of Blink by running it on an actual
Tofino switch.

1 Introduction
Thanks to widely deployed fast-convergence frameworks
such as IPFFR [35], Loop-Free Alternate [7] or MPLS Fast
Reroute [29], sub-second and ISP-wide convergence upon link
or node failure is now the norm [6, 15]. At a high-level, these
fast-convergence frameworks share two common ingredients:
(i) fast detection by leveraging hardware-generated signals
(e.g., Loss-of-Light or unanswered hardware keepalive [23]);
and (ii) quick activation by promptly activating pre-computed
backup state upon failure instead of recomputing the paths
on-the-fly.

Problem: Convergence upon remote failures is still slow.
These frameworks help ISPs to retrieve connectivity upon
internal (or peering) failures but are of no use when it comes
to restoring connectivity upon remote failures. Unfortunately,
remote failures are both frequent and slow to repair, with aver-
age convergence times above 30 s [19, 24, 28]. These failures
indeed trigger a control-plane-driven convergence through
the propagation of BGP updates on a per-router and per-prefix

Figure 1: It can take minutes to receive the first BGP update
following data-plane failures during which traffic is lost.

basis. To reduce convergence time, SWIFT [19] predicts the
entire extent of a remote failure from a few received BGP
updates, leveraging the fact that such updates are correlated
(e.g., they share the same AS-PATH). The fundamental prob-
lem with SWIFT though, is that it can take O(minutes) for
the first BGP update to propagate after the corresponding
data-plane failure.

We illustrate this problem through a case study, by mea-
suring the time the first BGP updates took to propagate after
the Time Warner Cable (TWC) networks were affected by an
outage on August 27 2014 [1]. We consider as outage time t0,
the time at which traffic originated by TWC ASes observed
at a large darknet [10] suddenly dropped to zero. We then col-
lect, for each of the routers peering with RouteViews [27] and
RIPE RIS [2], the timestamp t1 of the first BGP withdrawal
they received from the same TWC ASes. Figure 1 depicts
the CDFs of (t1 � t0) over all the BGP peers (100+ routers,
in most cases) that received withdrawals for 7 TWC ASes:
more than half of the peers took more than a minute to receive
the first update (continuous lines). In addition, the CDFs of
the time difference between the outage and the last prefix
withdrawal for each AS, show that BGP convergence can be
as slow as several minutes (dashed lines).
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