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We can divide routing into
four main tasks



We can divide routing into
four main tasks

while(true); do

detect
notify
compute

update

network changes
remote devices of the changes
new paths

the local forwarding state



Except for notifying,
all tasks can take minutes to complete



In the worst-case,
it can take >1 min to...



In the worst-case,
it can take >1 min to...

detect remote Internet failures
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In the worst-case,
it can take >1 min to...

compute the routing state for 100,000s destinations



In the worst-case,
it can take >1 min to...

update 100,000s of forwarding entries



Routing Computes and maintains
the set of paths alongside
which network traffic flows

Flexible, but slow



Scheduling Controls how traffic flows
alongside these paths

Fast, but fixed



There exists a wide variety of scheduling policies,
optimizing for a wide variety of objectives
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Quite unfortunately...

a universal scheduling algorithm does not exist

NSDI'16

Universal Packet Scheduling

Radhika Mittal Rachit Agarwal’
YUC Berkeley

Abstract

In this paper we address a seemingly simple question:
Is there a universal packet scheduling algorithm? More
precisely, we analyze (both theoretically and empirically)
whether there is a single packet scheduling algorithm that,
at a network-wide level, can perfectly match the results of
any given scheduling algorithm. We find that in general
the answer is “no”. However, we show theoretically that

the classical Least Slack Time First (LSTF) scheduling al-
gorithm comes closest to being universal and demonstrate
empirically that LSTF can closely replay a wide range of
scheduling algorithms in realistic network settings. We
then evaluate whether LSTF can be used in practice to
meet various network-wide objectives by looking at pop-
ular performance metrics (such as mean FCT, tail packet
delays, and faimess); we find that LSTF performs com-
parable to the state-of-the-art for each of them. We also
discuss how LSTF can be used in conjunction with ac-
tive queue management schemes (such as CoDel) without
changing the core of the network.

1 Introduction

There is a large and active research literature on novel
packet scheduling algorithms, from simple schemes such
as priority scheduling [31], to more complicated mech-
anisms to achieve fairness [16, 29, 32], to schemes that
help reduce tail latency [15] or flow completion time [7],
and this short list barely scratches the surface of past and

Sylvia Ratnasamy' Scott Shenker'*
Hiest

We can define a universal packet scheduling algorithm
(hereafter UPS) in two ways, depending on our viewpoint
on the problem. From a theoretical perspective, we call a
packet scheduling algorithm universal if it can replay any
schedule (the set of times at which packets arrive to and
exit from the network) produced by any other scheduling
algorithm. This is not of practical interest, since such
schedules are not typically known in advance, but it offers
a theoretically rigorous definition of universality that (as
we shall see) helps illuminate its fundamental limits (i.e.,
which scheduling algorithms have the flexibility to serve
as a UPS, and why).

From a more practical perspective, we say a packet
scheduling algorithm is universal if it can achieve dif-
ferent desired performance objectives (such as fairness,
reducing tail latency, minimizing flow completion times).
In particular, we require that the UPS should match the
performance of the best known scheduling algorithm for
a given performance objective. !

The notion of universality for packet scheduling might
seem esoteric, but we think it helps clarify some basic
questions. If there exists no UPS then we should expect
to design new scheduling algorithms as performance ob-
jectives evolve. Moreover, this would make a strong ar-
gument for switches being equipped with programmable
packet schedulers so that such algorithms could be more
easily deployed (as argued in [33]; in fact, it was the elo-
quent argument in this paper that caused us to initially ask




The need for diversity x lack of generality
motivates the need for flexible scheduling
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The need for diversity x lack of generality
motivates the need for flexible scheduling

You can’t have everytning you want...

but you can have anything you want
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detect network changes

notify remote devices of the changes
compute new paths

update the local forwarding state

...in hardware?!
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While the control plane can take minutes to learn about a failure,
the traffic itself is instantaneously affected



While the control plane can take minutes to learn about a failure,
the traffic itself is instantaneously affected

What about we track this signal instead?



Internet traffic end-points retransmit packets
upon experiencing packet drops
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Many end points retransmitting simultaneously leads to
waves of retransmission
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Tracking this signal in the data plane is challenging

Signal is noisy

Signal fades away

Signal is composed of many small ones



The signal quickly fades away as

subsequent waves spread over longer periods of time
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To solve these challenges, we consider a subset of the signal
for which we maximize the signal-to-noise ratio



To solve these challenges, we consider a subset of the signal
for which we maximize the signal-to-noise ratio

Signal is noisy

Focus on retransmissions due to bursty losses

Signal fades away

Focus on active flows

Signal is composed of many small ones

Rely on scalable data structures and sampling



Traffic-driven failure inference is accurate
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Traffic-driven failure inference is accurate

Accuracy is >80% in most cases
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Traffic-driven failure inference is fast

Inference speed (sec) 6 -

Failure scenarios



Traffic-driven failure inference is fast

Inference is made <1s in most cases

Inference speed (sec) 6 -

Failure scenarios




What about we...

compute new paths

update the local forwarding state

...in hardware?!



Switches can compute and update their forwarding state
in hardware, without a controller



Switches can compute and update their forwarding state
in hardware, without a controller

Let me show you how (in P4)
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Use registers to store
the best paths and their attributes
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Use tables to store link costs and to
map destinations to their register entries
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Let the switches flood their forwarding state,
one destination at time
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Upon receiving a routing message,
have the switches recompute their forwarding state

prefix-to-
index

A 10
C 1

link cost

port cost path

dynamically
computed
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Upon receiving a routing message,
have the switches recompute their forwarding state

prefix-to-
index

A 10
C 1

link cost

2 [ABC]

port cost path

dynamically
computed

/\ if(2+1) <10

forwar.dlng s.tate 50 i1 3 [ABCD]

stored in registers

0000




We have a working P46 prototype
Tofino implementation coming up

Implementation >2000 lines of code

run on software model (bmv?2)

Capabilities Intra—-domain destinations

path-vector routing (a la RIP)

Inter-domain destinations

policy-based routing (a la BGP)



What about we...

detect network changes

notify remote devices of the changes
compute new paths

update the local forwarding state

...in hardware?!



Offloading routing tasks does not come for free

It is not always a good idea—think first!

Some tasks cannot be offloaded

e.g. crypto operations

Some tasks should probably not be offloaded
e.g. implementing the entire BGP/TCP protocol

Offloading routing tasks consumes hardware ressources

and those cannot be reused for other applications...
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The need for diversity x lack of generality
motivates the need for flexible scheduling



Push-In First-Out Queue (PIFO) is a data structure

that enables programmable packet scheduling
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Programmable Packet Scheduling
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ABSTRACT

Switches today provide a small set of scheduling algorithms.
While we can tweak scheduling parameters, we cannot mod-
ify algorithmic logic, or add a completely new algorithm,
after the switch has been designed. This paper presents a
design for a programmable packet scheduler, which allows
scheduling algorithms—potentially algorithms that are un-
known today——to be programmed into a switch without re-
quiring hardware redesign.

Our design builds on the observation that scheduling algo-
rithms make two decisions: in what order to schedule pack-
ets and when to schedule them. Further, in many schedul-
ing algorithms these decisions can be made when packets
are enqueued. We leverage this observation to build a pro-
grammable scheduler using a single abstraction: the push-in
first-out queue (PIFO), a priority queue that maintains the
scheduling order and time for such algorithms.

We show that a programmable scheduler using PIFOs lets
us program a wide variety of scheduling algorithms. We
present a detailed hardware design for this scheduler for a
64-port 10 Gbit/s shared-memory switch with <4% chip area
overhead on a 16-nm standard-cell library. Our design lets
us program many sophisticated algorithms, such as a 5-level
hierarchical scheduler with programmable scheduling algo-
rithms at each level.

1. INTRODUCTION

uler, switch designers would implement scheduling algo-
rithms as programs atop a programmable substrate. Moving
scheduling algorithms into software makes it much easier to
build and verify algorithms in comparison to implementing
the same algorithms as rigid hardware IP.

This paper presents a design for programmable packet
scheduling in line-rate switches. Our design is motivated by
the observation that all scheduling algorithms make two key
decisions: first, in what order should packets be scheduled,
and second, at what time should each packet be scheduled.
Furthermore, in many scheduling algorithms, these two deci-
sions can be made when a packet is enqueued. This observa-
tion was first made in a recent position paper [36]. The same
paper also proposed the push-in first-out queue (PIFO) [15]
abstraction for maintaining the scheduling order or schedul-
ing time for packets, when these can be determined on en-
queue. A PIFO is a priority queue data structure that allows
elements to be pushed into an arbitrary location based on
an element’s rank, but always dequeues elements from the
head.

Building on the PIFO abstraction, this paper presents the
detailed design, implementation, and analysis of feasibil-
ity of a programmable packet scheduler. To program a
PIFO, we develop the notion of a scheduling transaction—
a small program to compute an element’s rank in a PIFO.
We present a rich programming model built using PIFOs
and scheduling transactions (§2) and show how to pro-
gram a diverse set of scheduling algorithms in the model




Push-In First-Out Queue (PIFO) is a data structure
that enables programmable packet scheduling

A PIFO queue...

m perfectly reorders packets according to their ranks

B drains packets from the head



PIFO queue
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Incoming PIFO queue
packets
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Incoming PIFO queue
packets
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Incoming PIFO queue
packets

5041403201



PIFO queue Outgoing
packets

5041403201



PIFO queue Outgoing
packets

—




Push-In First-Out Queue (PIFO) is a data structure
that enables programmable packet scheduling

How exactly?



Implementing a new algorithm simply requires
to adapt the rank computation logic

Programmable Scheduler

Incoming Rank computation logic PIFO queue Outgoing
packets . programmable fixed . packets

ranked packets

p.rank = f.size




Implementing PIFO queues in hardware is challenging

Existing proposal...

Scalability supports ~1k flows and ~10 Gbps
Flexibility assumes monotonically increasing ranks
Moreover...

Deployability implementing ASICs takes years



Can we approximate PIFO queues...

B at line rate;
B at scale;

B on existing devices?
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Can we approximate PIFO queues...

B at line rate;
B at scale;

B on existing devices?

Yep!
Introducing SP-PIFO



SP-PIFO approximates PIFO queues using
strict-priority queues and a dynamic mapping strategy
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SP-PIFO approximates PIFO queues using
strict-priority queues and a dynamic mapping strategy

gqueue mapping policy: enqueues if rank > queueidx
when scanning bottom-up



If there are as many queues as ranks,
SP-PIFO is equivalent to PIFO

~(

_

exactly one rank per queue




In practice though,
number of ranks >> number of queues

|
' O
| 3

5 ranks
\

3 queues



Different ranks share the same queues
ranks {1,2} and ranks {4,5}



Depending on the packets order, having distinct ranks
in one queue can lead to scheduling errors
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We can minimize the number of scheduling errors
by dynamically adapting the mapping policy



We can minimize the number of scheduling errors
by dynamically adapting the mapping policy

|
O




We can minimize the number of scheduling errors
by dynamically adapting the mapping policy

|
O

mapping policy g* = [1,3,4]



We can minimize the number of scheduling errors
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We can minimize the number of scheduling errors
by dynamically adapting the mapping policy
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We can minimize the number of scheduling errors
by dynamically adapting the mapping policy
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We can minimize the number of scheduling errors
by dynamically adapting the mapping policy
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We can minimize the number of scheduling errors
by dynamically adapting the mapping policy
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We can minimize the number of scheduling errors
by dynamically adapting the mapping policy

|
o=
v

PIFO-compliant

T

mapping policy q* =[1,2,3] v



SP-PIFO: Approximating Push-In First-Out Behaviors
Using Strict-Priority Queues

1 Adaptation strategy

how does it work?

2 Implementation

how can it be deployed?

3 Fvaluation

how well does it perform?



SP-PIFO: Approximating Push-In First-Out Behaviors
Using Strict-Priority Queues

1 Adaptation strategy

how does it work?

2 Implementation

how can it be deployed?

3 Fvaluation

how well does it perform?



Finding an optimal mapping policy is
an optimization problem

X

q° = argmin [ U(q,7) |
qu r~R ‘

optimal expected loss across all ranks
mapping policy "unpifoness”



Solving this optimization problem

exactly is unfortunately
g = argmin [ U(q,7) |
qu r~R ‘
optimal expected loss across all ranks

mapping policy "unpifoness”



We can approximate the solution by turning the problem
into an online empirical risk minimization problem



We can approximate the solution by turning the problem
into an online empirical risk minimization problem

enqueued
packets

\
q* = argmin U(P,q)
S1% ‘

online estimated
mapping policy unpifoness



SP-PIFO dynamically adapts the mapping policy
on a per-packet basis, in two phases



SP-PIFO dynamically adapts the mapping policy
on a per-packet basis, in two phases

phase 1 gradually map higher-priority packets
push-up to higher-priority queues

concentrates scheduling errors
in the highest-priority queue



SP-PIFO dynamically adapts the mapping policy
on a per-packet basis, in two phases

upon scheduling error...

phase 2 shift lower-priority packets
push-down to lower-priority queues















"push-up” increase queueidx to rank(enqueued packet)

































scheduling error of cost 3-2=1




scheduling error of cost 3-2=1




scheduling error of cost 3-2=1

"push-down" decrease all queueidx by cost



SP-PIFO: Approximating Push-In First-Out Behaviors
Using Strict-Priority Queues

Adaptation strategy

how does it work?

2 Implementation

how can it be deployed?

Fvaluation

how well does it perform?



We managed to program SP-PIFO on
existing programmable data planes

Registers

Queue Bound n Queue Bound n-1 Queue Bound 1
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SP-PIFO: Approximating Push-In First-Out Behaviors
Using Strict-Priority Queues

Adaptation strategy

how does it work?

Implementation

how can it be deployed?

3 Fvaluation

how well does it perform?



How well can SP-PIFO approximate
well-known scheduling objectives?



How well can SP-PIFO approximate
well-known scheduling objectives?

Scheduling Minimize Flow Completion Time
objectives

pFabric (8 queues)

Ranks are set to the remaining flow size

Enforce max-min fairness

Start-Time Fair Queuing (32 queues)

Ranks based on a fluid model



Packet-level
simulator

Topology

Realistic
workloads

Netbench [SIGCOMM 201 7]

We use a leaf-spine topology with:
144 servers, 1/4 Gbps links

pFabric web-search workload



SP-PIFO closely approximates pFabric
minimizing FCTs for both small and big flows

99th percentile FCT (ms)
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Average FCT (ms)
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SP-PIFO closely approximates fair-queueing algorithms

Average FCT (ms) Average FCT (ms)
10 107
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Small flows <100KB All flows @ Load 0.7



SP-PIFO: Approximating Push-In First-Out Behaviors
Using Strict-Priority Queues

Adaptation strategy

how does it work?

Implementation

how can it be deployed?

Fvaluation

how well does it perform?



SP-PIFO makes packet scheduling programmable... today!

SP-PIFO approximates the behavior of PIFO queues
at line rate, at scale and on existing devices

SP-PIFO dynamically maps packets to queues
sO as to minimize scheduling errors

SP-PIFO automatically reacts to traffic variations
without requiring any traffic knowledge
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definitely not great routing
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control plane | software | C++

likely an overkill routing

data plane | hardware | P4



control plane | software | C++

routing

how do we navigate
this spectrum?

routing

data plane | hardware | P4



control plane | software | C++

routing
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ABSTRACT

One design principle of modern network architecture seems
to be set in stone: a software-based control plane drives a
hardware- or software-based data plane. We argue that it is
time to revisit this principle after the advent of programmable
switch ASICs which can run complex logic at line rate.

We explore the possibility and benefits of accelerating the
control plane by offloading some of its tasks directly to the net-
work hardware. We show that programmable data planes are
indeed powerful enough to run key control plane tasks includ-
ing: failure detection and notification, connectivity retrieval,
and even policy-based routing protocols. We implement in P4
a prototype of such a “hardware-accelerated” control plane,
and illustrate its benefits in a case study.

Despite such benefits, we acknowledge that offloading
tasks to hardware is not a silver bullet. We discuss its tradeoffs
and limitations, and outline future research directions towards
hardware-software codesign of network control planes.

1 INTRODUCTION

As the “brain” of the network, the control plane is one of
its most important assets. Among other things, the control
plane is responsible for sensing the status of the network (e.g.,
which links are up or which links are overloaded), computing
the best paths along which to guide traffic, and updating
the underlying data plane accordingly. To do so, the control
plane is composed of many dynamic and interacting processes
(e.g., routing, management and accounting protocols) whose
operation must scale to large networks. In contrast, the data
plane is “only” responsible for forwarding traffic according
to the control plane decisions, albeit as fast as possible.
These fundamental differences lead to very different de-
sign philosophies. Given the relative simplicity of the data
plane and the “need for speed”, it is typically entirely imple-
mented in hardware. That said, software-based implementa-
tions of data planes are also commonly found (e.g., Open-
VSwitch [30]) together with hybrid software-hardware ones
(e.g., CacheFlow [20]). In short, data plane implementations
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cover the entire implementation spectrum, from pure software
to pure hardware. In contrast, there is much less diversity in
control plane implementations. The sheer complexity of the
control plane tasks (e.g., performing routing computations)
together with the need to update them relatively frequently
(e.g., to support new protocols and features) indeed calls for
software-based implementations, with only a few key tasks
(e.g., detecting physical failures, activating backup forward-
ing state) being (sometimes) offloaded to hardware [13, 22].

Yet, we argue that a number of recent developments are
creating both the need and opportunity for rethinking basic
design and implementation choices of network control planes.

Need There is a growing need for faster, more scalable, and
yet more powerful control planes. Nowadays, even beefed-
up and highly-optimized software control planes can only
process thousands of (BGP) control plane messages per sec-
ond [23], and can take minutes to converge upon large fail-
ures [17, 36]. Parallelizing only marginally helps: for instance,
the BGP specification [31] mandates to lock all Adj-RIBs-In
before proceeding with the best-path calculation, essentially
preventing the parallel execution of best path computations.
A concrete risk is that convergence time will keep increasing
with the network size and the number of Internet destinations.
At the same time, recent research has repeatedly shown the
performance benefits of controlling networks with extremely
tight control loops, among others to handle congestion (e.g.,
[7,21,29]).

Opportunity Modern reprogrammable switches (e.g., [1]) can
perform complex stateful computations on billions of packets
per second [19]. Running (pieces of) the control plane at such
speeds would lead to almost “instantaneous” convergence,
leaving the propagation time of the messages as the primary
bottleneck. Besides speed, offloading control plane tasks to
hardware would also help by making them traffic-aware. For
instance, it enables to update forwarding entries consistently
with real-time traffic volumes rather than in a random order.

Research questions Given the opportunity and the need, we
argue that it is time to revisit the control plane’s design and im-
plementation by considering the problem of offloading parts
of it to hardware. This redesign opens the door to multiple re-
search questions including: Which pieces of the control plane
should be offloaded? What are the benefits? and How can
we overcome the fundamental hardware limitations? These
fundamental limitations come mainly from the very limited
instruction set (e.g., no floating point) and the memory avail-
able (i.e., around tens of megabytes [19]) of programmable
network hardware. We start to answer these questions in this
paper and make two contributions.

NSDI'19

Blink: Fast Connectivity Recovery Entirely in the Data Plane

Thomas Holterbach! Edgar Costa Molero} Maria Apostolaki*
Alberto Dainotti! Stefano Vissicchio? Laurent Vanbever*

*ETH Zurich, "\CAIDA / UC San Diego, *University College London

Abstract

We present Blink, a data-driven system that leverages TCP-
induced signals to detect failures directly in the data plane.
The key intuition behind Blink is that a TCP flow exhibits a
predictable behavior upon disruption: retransmitting the same
packet over and over, at epochs exponentially spaced in time.
When compounded over multiple flows, this behavior creates
a strong and characteristic failure signal. Blink efficiently
analyzes TCP flows to: (i) select which ones to track; (ii)
reliably and quickly detect major traffic disruptions; and (iii)
recover connectivity—all this, completely in the data plane.

‘We present an implementation of Blink in P4 together with
an extensive evaluation on real and synthetic traffic traces.
Our results indicate that Blink: (i) achieves sub-second rerout-
ing for large fractions of Internet traffic; and (ii) prevents
unnecessary traffic shifts even in the presence of noise. We
further show the feasibility of Blink by running it on an actual
Tofino switch.

1 Introduction

Thanks to widely deployed fast-convergence frameworks
such as IPFFR [35], Loop-Free Alternate [7] or MPLS Fast
Reroute [29], sub-second and ISP-wide convergence upon link
or node failure is now the norm [6, 15]. At a high-level, these
fast-convergence frameworks share two common ingredients:
(1) fast detection by leveraging hardware-generated signals
(e.g., Loss-of-Light or unanswered hardware keepalive [23]);
and (ii) quick activation by promptly activating pre-computed
backup state upon failure instead of recomputing the paths
on-the-fly.

Problem: Convergence upon remote failures is still slow.
These frameworks help ISPs to retrieve connectivity upon
internal (or peering) failures but are of no use when it comes
to restoring connectivity upon remote failures. Unfortunately,
remote failures are both frequent and slow to repair, with aver-
age convergence times above 30s [19,24,28]. These failures
indeed trigger a control-plane-driven convergence through
the propagation of BGP updates on a per-router and per-prefix
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Figure 1: It can take minutes to receive the first BGP update
following data-plane failures during which traffic is lost.

basis. To reduce convergence time, SWIFT [19] predicts the
entire extent of a remote failure from a few received BGP
updates, leveraging the fact that such updates are correlated
(e.g., they share the same AS-PATH). The fundamental prob-
lem with SWIFT though, is that it can take O(minutes) for
the first BGP update to propagate after the corresponding
data-plane failure.

We illustrate this problem through a case study, by mea-
suring the time the first BGP updates took to propagate after
the Time Warner Cable (TWC) networks were affected by an
outage on August 27 2014 [1]. We consider as outage time 7y,
the time at which traffic originated by TWC ASes observed
at a large darknet [10] suddenly dropped to zero. We then col-
lect, for each of the routers peering with RouteViews [27] and
RIPE RIS [2], the timestamp #; of the first BGP withdrawal
they received from the same TWC ASes. Figure 1 depicts
the CDFs of (¢; —#o) over all the BGP peers (100+ routers,
in most cases) that received withdrawals for 7 TWC ASes:
more than half of the peers took more than a minute to receive
the first update (continuous lines). In addition, the CDFs of
the time difference between the outage and the last prefix
withdrawal for each AS, show that BGP convergence can be
as slow as several minutes (dashed lines).
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Abstract

Push-In First-Out (PIFO) queues are hardware primitives
which enable programmable packet scheduling by providing
the abstraction of a priority queue at line rate. However, imple-
menting them at scale is not easy: just hardware designs (not
implementations) exist, which support only about 1k flows.

In this paper, we introduce SP-PIFO, a programmable
packet scheduler which closely approximates the behavior
of PIFO queues using strict-priority queues—at line rate, at
scale, and on existing devices. The key insight behind SP-
PIFO is to dynamically adapt the mapping between packet
ranks and available strict-priority queues to minimize the
scheduling errors with respect to an ideal PIFO. We present
a mathematical formulation of the problem and derive an
adaptation technique which closely approximates the optimal
queue mapping without any traffic knowledge.

We fully implement SP-PIFO in P4 and evaluate it on real
workloads. We show that SP-PIFO: (i) closely matches PIFO,
with as little as 8 priority queues; (ii) scales to large amount of
flows and ranks; and (iii) quickly adapts to traffic variations.
We also show that SP-PIFO runs at line rate on existing hard-
ware (Barefoot Tofino), with a negligible memory footprint.

1 Introduction

Until recently, packet scheduling was one of the last bastions
standing in the way of complete data-plane programmability.
Indeed, unlike forwarding whose behavior can be adapted
thanks to languages such as P4 [7] and reprogrammable hard-
ware [2], scheduling behavior is mostly set in stone with
hardware implementations that can, at best, be configured.

To enable programmable packet scheduling, the main chal-
lenge was to find an appropriate abstraction which is flexible
enough to express a wide variety of scheduling algorithms and
yet can be implemented efficiently in hardware [22]. In [23],
Sivaraman et al. proposed to use Push-In First-Out (PIFO)
queues as such an abstraction. PIFO queues allow enqueued
packets to be pushed in arbitrary positions (according to the
packets rank) while being drained from the head.

Incoming packets sequence

already enqueued

PIFO queue (theoretical)

strategy A

SP-PIFO (approximation)

Figure 1: SP-PIFO approximates the behavior of PIFO queues
by adapting how packet ranks are mapped to priority queues.

While PIFO queues enable programmable scheduling, im-
plementing them in hardware is hard due to the need to ar-
bitrarily sort packets at line rate. [23] described a possible
hardware design (not implementation) supporting PIFO on
top of Broadcom Trident II [1]. While promising, realizing
this design in an ASIC is likely to take years [6], not includ-
ing deployment. Even ignoring deployment considerations,
the design of [23] is limited as it only supports ~1000 flows
and relies on the assumption that the packet ranks increase
monotonically within each flow, which is not always the case.

Our work In this paper, we ask whether it is possible to ap-
proximate PIFO queues at scale, in existing programmable
data planes. We answer positively and present SP-PIFO,
an adaptive scheduling algorithm that closely approximates
PIFO behaviors on top of widely-available Strict-Priority (SP)
queues. The key insight behind SP-PIFO is to dynamically
adapt the mapping between packet ranks and SP queues in
order to minimize the amount of scheduling mistakes relative
to a hypothetical ideal PIFO implementation.
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