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Network reconfigurations happen often

Daily Routing policy adaptions’
Monthly Traffic engineering adjustments’

Yearly Major network redesign?

1 .
Stefano Vissicchio et al. “Improving Network Agility with Seamless BGP Reconfigura-
tions”. In: IEEE/ACM Transactions on Networking. 2012

2
Arjun Singh et al. “Jupiter Rising: A Decade of Clos Topologies and Centralized Control
in Google's Datacenter Network”. In: ACM SIGCOMM. 2015.
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Network reconfigurations happen often and cause incidents

Alibaba revealed that 56% of the incidents
are caused by configuration updates®

3 .
Honggiang Harry Liu et al. “Automatic Life Cycle Management of Network Configura-
tions”. In: ACM SelfDN. 2018.
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unallowed and unnecessary traffic shifts
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A few best practices exist

NETWORK MERGERS
AND MIGRATIONS

Junos® Design and Implementation

WILEY SERES INCOMMUNICATIONS NETWORKING & DISTREUTED SYSTEMS

GONZALO GOMEZ HERRERO
VWILEY JAN ANTGN BERNAL VAN DER VEN
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Best practices are not enough
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Migration from iBGP full-mesh to route-reflection:

> 50% chance to violate reachability

Random order 70%
Best practice order 25%
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Existing systems are limited

Best practice
“Offline” systems

“*Laurent Vanbever et al. “Lossless Migrations of Link-State IGPs". In: /EEE/ACM
Transactions on Networking. 2012

Stefano Vissicchio et al. “Improving Network Agility with Seamless BGP Reconfigura-
tions”. In: IEEE/ACM Transactions on Networking. 2012
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4
Laurent Vanbever et al. “Lossless Migrations of Link-State IGPs".

Stefano Vissicchio et al. “Improving Network Agility with Seamless BGP Reconfigura-
tions”.
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4
Laurent Vanbever et al. “Lossless Migrations of Link-State IGPs".

Stefano Vissicchio et al. “Improving Network Agility with Seamless BGP Reconfigura-

tions”.
5

Pierre Francois et al. “Avoiding Transient Loops During the Convergence of Link-State

Routing Protocols”.

Pierre Francois et al. “Avoiding Disruptions during Maintenance Operations on BGP

Sessions”.
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Snowcap performs network reconfigurations
automatically and safely
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Snowcap performs network reconfigurations
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Snowcap performs network reconfigurations

automatically and safely

Input

¢

hard spec

Describe how
network properties change
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Snowcap's specification language is extremely flexible

e Basic Policies for each flow:
Reachability, isolation, redundancy, waypointing.

¢ Linear Temporal Logic (LTL):

Express how the policy changes during migration.
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Linear Temporal Logic captures policy changes

Firewall migration from r; to ro

( /\ r1 € path, UG ry € pathm>

zeFlows

All flows can switch at different times.
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Linear Temporal Logic captures policy changes

Firewall migration from r{ to oy

< /\ r1 € path, UXG rq € pathm>

z€Flows

All flows are allowed to bypass the firewall for a short time.
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Linear Temporal Logic captures policy changes

Firewall migration from r{ to oy

( /\ 1 epa,th;,;) UG < /\ 7'2€p(1t]?/;5>

zeFlows z€Flows

All flows must change at the same time.
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Snowcap performs network reconfigurations

automatically and safely

Input

f

soft spec

Minimize cost function
— good solution
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Not all correct orderings are created equally
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Snowcap performs network reconfigurations
automatically and safely

Input

Find a valid and good
ordering of commands and
apply them one-by-one

Snowcap

=

Live Network
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It's all about navigating the search space
of possible reconfiguration orderings

The search space is both

e sparse; and
e huge.
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It's all about navigating the search space

of possible reconfiguration orderings

CealdUed gy
bcd B
The search space is both  &dlao CeoWUadgrs

c

7
a C
e sparse; and @ i

e huge. an,
GrEY.) o @d  gdd

lab) o
@

(@ cld

© @) (@ bld—(at

@ @dio
arn,
cldab
e Daraa@so @labd
Tdba A\ 13/27



1. Exploration
How does Snowcap solve simple scenarios?

2. Counter-example-guided search
How does Snowcap solve more difficult scenarios?

3. Evaluation
How efficient and effective is Snowcap?
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The exploration algorithm is based on DFS traversal
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Sequences with a known, bad prefix are not explored
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Greedy minimization of the cost function
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DFS Exploration works well in most cases

Qstu|v) (rstu|w)

However: What if we get stuck?
Bad decision early may cause
problems later.

—» Actively find the problem!
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2. Counter-example-guided search
How does Snowcap solve more difficult scenarios?
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Snowcap uses counter-example-guided search
to resolve difficult dependencies

DFS
Exploration Snowcap ...
e performs normal exploration
( ) until a dead end

¢ follows a divide-and-conquer
Counter-example- approach

guided search
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Initial configuration
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Final configuration
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Final configuration
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DFS traversal first applies @ followed by b
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Either ‘¢ and ‘d will now cause forwarding loops
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Reduce to minimal reproducing sequence
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Reduce to minimal reproducing sequence
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Reduce to minimal reproducing sequence

reduce

current ordering: (©)
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Solve the minimal sequence using the DFS algorithm

reduce

current ordering: (©)
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Extend with yet unused commands

tq
g
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Solve the extended sequence
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Keep the found solution for future iterations

tq
g
reduce ’
[ ] current ordering:
C
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3. Evaluation

® How does Snowcap scale?
® How effective is Snowcap?
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We evaluate Snowcap on a wide range of
topologies and migration scenarios

® = 80 Topologies from Topology Zoo®

e Common migration scenarios’

® Random link weights and iBGP topologies.

6
S. Knight et al. “The Internet Topology Zoo". In: /EEE JSAC. 2011.

7 .
Gonzalo Gomez Herrero et al. Network Mergers and Migrations: Junos Design and
Implementation. Vol. 45. John Wiley & Sons, 2011.
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Snowcap finds solutions within seconds

Migration from iBGP full-mesh to route-reflection.

> 50% chance to violate reachability

Random order 70%
Best practice order 25%
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Snowcap finds solutions within seconds

Migration from iBGP full-mesh to route-reflection.

> 50% chance to violate reachability time
Random order 70%

Best practice order 25%

Snowcap 0% at most 12s*

*for 3081 commands on 82 routers.
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Snowcap's runtime scales very well with increasing complexity
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Snowcap's runtime scales very well with increasing complexity

Time [s] Time [s]
random permutations DFS
21 30 1 exploration
Showcap ranqom .
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Snowcap is effective at finding good orderings

Cost (# of traffic shifts)

55

Network acquisition
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Snowcap is effective at finding good orderings

Cost (# of traffic shifts)

Snowcap

random
permutations

Network acquisition

Cost (# of traffic shifts)

Snowcap

random
permutations

78

Double all link weights
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Predictable overhead for Snowcap's greedy optimization
# of states explored
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Predictable overhead for Snowcap's greedy optimization
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Snowcap guarantees safe network reconfigurations

Snowcap is open-source
https://snowcap.ethz.ch
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