

Snowcap: Synthesizing Network-Wide Configuration Updates

Tibor Schneider Rüdiger Birkner Laurent Vanbever

SIGCOMM'21, August 24, 2021

Network reconfigurations happen often

Daily Routing policy adaptions¹ Monthly Traffic engineering adjustments¹ Yearly Major network redesign²

¹Stefano Vissicchio et al. "Improving Network Agility with Seamless BGP Reconfigurations". In: *IEEE/ACM Transactions on Networking*. 2012

²Arjun Singh et al. "Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google's Datacenter Network". In: ACM SIGCOMM. 2015. Network reconfigurations happen often and cause incidents

Alibaba revealed that 56% of the incidents are caused by configuration updates³

³ Hongqiang Harry Liu et al. "Automatic Life Cycle Management of Network Configurations". In: ACM SelfDN. 2018.

Objective ϕ : Traffic from r_x to E*must* traverse r_{fw} .

a eBGP session: $E \longrightarrow r_1$

c Link weight $r_{fw} - r_1: 5 \rightsquigarrow 9$

- a eBGP session: $E \longrightarrow r_1$
- b Link weight $r_x r_1: 10 \rightsquigarrow 20$
- *c* Link weight $r_{fw} r_1: 5 \rightsquigarrow 9$

- *a* eBGP session: $E \rightarrow r_1$
- b Link weight $r_x r_1: 10 \rightsquigarrow 20$
- *c* Link weight $r_{fw} r_1: 5 \rightsquigarrow 9$

c) Link weight $r_{fw} - r_1: 5 \rightsquigarrow 9$

- a eBGP session: $E \longrightarrow r_1$
- b Link weight $r_x r_1: 10 \rightsquigarrow 20$
- *c* Link weight $r_{fw} r_1: 5 \rightsquigarrow 9$

Objective ϕ : Traffic from r_x to E*must* traverse r_{fw} .

a eBGP session: $E \longrightarrow r_1$

- b Link weight $r_x r_1: 10 \rightsquigarrow 20$
- *c* Link weight $r_{fw} r_1: 5 \rightsquigarrow 9$

- a eBGP session: $E \longrightarrow r_1$
- b Link weight $r_x r_1: 10 \rightsquigarrow 20$
- *c* Link weight $r_{fw} r_1: 5 \rightsquigarrow 9$

- *a* eBGP session: $E \rightarrow r_1$
- b Link weight $r_x r_1: 10 \rightsquigarrow 20$
- *c* Link weight $r_{fw} r_1: 5 \rightsquigarrow 9$

- a eBGP session: $E \longrightarrow r_1$
- b Link weight $r_x r_1: 10 \rightsquigarrow 20$
- *c* Link weight $r_{fw} r_1: 5 \rightsquigarrow 9$

Objective ϕ : Traffic from r_x to E*must* traverse r_{fw} .

a eBGP session: $E \longrightarrow r_1$

- b Link weight $r_x r_1: 10 \rightsquigarrow 20$
- *c* Link weight $r_{fw} r_1: 5 \rightsquigarrow 9$

Objective ϕ : Traffic from r_x to E*must* traverse r_{fw} .

a eBGP session: $E \longrightarrow r_1$

- b Link weight $r_x r_1: 10 \rightsquigarrow 20$
- c Link weight $r_{fw} r_1: 5 \rightsquigarrow 9$

c Link weight $r_{fw} - r_1: 5 \rightsquigarrow 9$

A few best practices exist

NETWORK MERGERS AND MIGRATIONS

Junos[®] Design and Implementation

GONZALO GÓMEZ HERRERO WILEY JAN ANTÓN BERNAL VAN DER VEN

Migration from iBGP full-mesh to route-reflection:

 $\geq 50\%$ chance to violate reachability

Migration from iBGP full-mesh to route-reflection:

$\geq 50\%$ chance to violate r	eachability
Random order	70 %

Migration from iBGP full-mesh to route-reflection:

$\geq 50\%$ chance to violate reachability	
Random order	70 %
Best practice order	25 %

Best practice X X X "Offline" systems 4 V V

⁴ Laurent Vanbever et al. "Lossless Migrations of Link-State IGPs". In: IEEE/ACM Transactions on Networking. 2012 Stefano Vissicchio et al. "Improving Network Agility with Seamless BGP Reconfigurations". In: IEEE/ACM Transactions on Networking. 2012

⁴Laurent Vanbever et al. "Lossless Migrations of Link-State IGPs". In: IEEE/ACM Transactions on Networking. 2012 Stefano Vissicchio et al. "Improving Network Agility with Seamless BGP Reconfigurations". In: IEEE/ACM Transactions on Networking. 2012

 ⁴ Laurent Vanbever et al. "Lossless Migrations of Link-State IGPs". In: IEEE/ACM Transactions on Networking. 2012
Stefano Vissicchio et al. "Improving Network Agility with Seamless BGP Reconfigurations". In: IEEE/ACM Transactions on Networking. 2012
⁵ Pierre Francois et al. "Avoiding Transient Loops During the Convergence of Link-State Routing Protocols". In: IEEE/ACM Transactions on Networking. 2007
Pierre Francois et al. "Avoiding Disruptions during Maintenance Operations on BGP Sessions". In: IEEE Transactions on Network and Service Management. 2007

 ⁴ Laurent Vanbever et al. "Lossless Migrations of Link-State IGPs". In: IEEE/ACM Transactions on Networking. 2012
Stefano Vissicchio et al. "Improving Network Agility with Seamless BGP Reconfigurations". In: IEEE/ACM Transactions on Networking. 2012
⁵ Pierre Francois et al. "Avoiding Transient Loops During the Convergence of Link-State

Pierre Francois et al. "Avoiding Transient Loops During the Convergence of Link-State Routing Protocols". In: IEEE/ACM Transactions on Networking. 2007 Pierre Francois et al. "Avoiding Disruptions during Maintenance Operations on BGP Sessions". In: IEEE Transactions on Network and Service Management. 2007

Snowcap performs network reconfigurations automatically and safely

Snowcap performs network reconfigurations automatically and safely

Snowcap performs network reconfigurations automatically and safely

Snowcap's specification language is extremely flexible

- **Basic Policies** for each flow: Reachability, isolation, redundancy, waypointing.
- Linear Temporal Logic (LTL): Express how the policy changes during migration.

Linear Temporal Logic captures policy changes

Firewall migration from r_1 to r_2

$$\left(\bigwedge_{x\in Flows} r_1 \in path_x \ \mathbf{UG} \ r_2 \in path_x\right)$$

All flows can switch at different times.
Linear Temporal Logic captures policy changes

Firewall migration from r_1 to r_2

$$\left(\bigwedge_{x\in Flows} r_1 \in path_x \ \mathbf{UXG} \ r_2 \in path_x\right)$$

All flows are allowed to bypass the firewall for a short time.

Linear Temporal Logic captures policy changes

Firewall migration from r_1 to r_2

$$\left(\bigwedge_{x\in Flows} r_1 \in path_x\right) \mathbf{UG} \left(\bigwedge_{x\in Flows} r_2 \in path_x\right)$$

All flows *must* change at **the same** time.

Snowcap performs network reconfigurations automatically and safely

cost: 0

Snowcap performs network reconfigurations automatically and safely

- sparse; and
- huge.

1. Exploration

How does Snowcap solve simple scenarios?

2. Counter-example-guided search

How does Snowcap solve more difficult scenarios?

3. Evaluation

How efficient and effective is Snowcap?

1. Exploration

How does Snowcap solve simple scenarios?

- 2. **Counter-example-guided search** How does Snowcap solve more difficult scenarios?
- 3. **Evaluation** How efficient and effective is Snowcap?

The exploration algorithm is based on DFS traversal

The exploration algorithm is based on DFS traversal

Sequences with a known, bad prefix are not explored

a

- b Link weight $r_x r_1: 10 \rightsquigarrow 20$
- c Link weight $r_{fw} r_1: 5 \rightsquigarrow 9$

DFS Exploration works well in most cases

However: What if we get stuck? Bad decision early may cause problems later.

--- Actively find the problem!

DFS Exploration works well in most cases

However: What if we get stuck? Bad decision early may cause problems later.

--- Actively find the problem!

- 1. **Exploration** How does Snowcap solve simple scenarios?
- 2. Counter-example-guided search How does Snowcap solve more difficult scenarios?
- 3. **Evaluation** How efficient and effective is Snowcap?

Snowcap uses counter-example-guided search to resolve difficult dependencies

Snowcap ...

- performs normal exploration until a dead end
- follows a **divide-and-conquer** approach

Initial configuration

Initial configuration

Final configuration

Final configuration

DFS traversal first applies a followed by b

DFS traversal first applies a followed by b

DFS traversal first applies a followed by b

Either c and d will now cause forwarding loops

Either c and d will now cause forwarding loops

Either *c* and *d* will now cause forwarding loops

Solve the minimal sequence using the DFS algorithm

Extend with yet unused commands

Solve the extended sequence

Keep the found solution for future iterations

1. Exploration How does Snowcap solve simple scenarios?

2. **Counter-example-guided search** How does Snowcap solve more difficult scenarios?

3. Evaluation

- How does Snowcap scale?
- How **effective** is Snowcap?

We evaluate Snowcap on a wide range of topologies and migration scenarios

- \approx 80 Topologies from Topology Zoo⁶
- Common migration scenarios⁷
- Random link weights and iBGP topologies.

 ⁶S. Knight et al. "The Internet Topology Zoo". In: IEEE JSAC. 2011.
⁷Gonzalo Gomez Herrero et al. Network Mergers and Migrations: Junos Design and Implementation. Vol. 45. John Wiley & Sons, 2011. Snowcap finds solutions within seconds

Migration from iBGP full-mesh to route-reflection.

 $\geq 50\%$ chance to violate reachability

Random order	70 %
Best practice order	25 %

Snowcap finds solutions within seconds

Migration from iBGP full-mesh to route-reflection.

$\geq 50\%$ chance to violate reachability		time
Random order	70 %	
Best practice order	${f 25\%}$	
Snowcap	0 %	at most $12s^{st}$

*for 3081 commands on 82 routers.

Network acquisition

Network acquisition

Networks from Topology Zoo

26 / 27

Networks from Topology Zoo

of states explored

Networks from Topology Zoo

Snowcap guarantees safe network reconfigurations

Snowcap is open-source https://snowcap.ethz.ch

Snowcap: Synthesizing Network-Wide Configuration Updates

Tibor Schneider Rüdiger Birkner Laurent Vanbever

https://nsg.ee.ethz.ch

