s I
ETHZzurich >, Nenworked systems

Snowcap: Synthesizing Network-Wide
Configuration Updates

Tibor Schneider Riidiger Birkner ~ Laurent Vanbever

SIGCOMM'21, August 24, 2021

Network reconfigurations happen often

Daily Routing policy adaptions’
Monthly Traffic engineering adjustments’

Yearly Major network redesign?

1 .
Stefano Vissicchio et al. “Improving Network Agility with Seamless BGP Reconfigura-
tions”. In: IEEE/ACM Transactions on Networking. 2012

2
Arjun Singh et al. “Jupiter Rising: A Decade of Clos Topologies and Centralized Control
in Google's Datacenter Network”. In: ACM SIGCOMM. 2015.

1/27

Network reconfigurations happen often and cause incidents

Alibaba revealed that 56% of the incidents
are caused by configuration updates®

3 .
Honggiang Harry Liu et al. “Automatic Life Cycle Management of Network Configura-
tions”. In: ACM SelfDN. 2018.

2/27

Careless migration can cause
unallowed and unnecessary traffic shifts

©

Objective ¢:
Traffic from r, to E
must traverse rg,.

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

()

Objective ¢:
Traffic from r, to E
must traverse 74,.

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

Tfw
e
Objective ¢:

10 5 10 Traffic from r, to E
must traverse 7.

m ©

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

Tfw
Objective ¢:

Traffic from r, to E
must traverse rg,.

a eBGP session: £ — 11

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

Tfw
@ —()
c Objective ¢:
10 5~ 9 10 Traffic from r, to E
must traverse 7.

0200
b ©

a eBGP session: £ — 711
b Link weight r, — r1: 10 ~ 20

¢ Link weight 74, — 7r1: 5~ 9

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

Tfw
e
Objective ¢:

10 5 10 Traffic from r, to E
must traverse 7.

10

a eBGP session: £ — 1
b Link weight r, — rq: o

¢ Link weight rg, — 712 5 ~

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

Tfw
Objective ¢:

Traffic from r, to E
must traverse 7.

a eBGP session: £ — 711
b Link weight r, — rq: ~

¢ Link weight rg, — 712 5 ~

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

Tfw
Objective ¢:

Traffic from r, to E
must traverse 7.

®

a eBGP session: £ — 711
b Link weight r, — rq: ~

¢ Link weight rg, — 712 5 ~

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

Tfw
e
Objective ¢:

10 5 10 Traffic from r, to E
must traverse 7.

10

a eBGP session: £ — 1
b Link weight r, — rq: o

¢ Link weight rg, — 712 5 ~

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

Tfw
O

Objective ¢:
10 5 10 Traffic from r, to E
must traverse 74,.
10 ~ 20
b

a eBGP session: £ — 1
b Link weight r, — r1: 10 ~ 20

¢ Link weight rg, — 712 5 ~

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

Tfw
Objective ¢:

Traffic from r, to E
must traverse 7.

a eBGP session: £ — 711
b Link weight r, — r1: 10 ~ 20

¢ Link weight rg, — 712 5 ~

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

Tfw
Objective ¢:

Traffic from r, to E
must traverse rg,.

a eBGP session: £ — 11

b Link weight r, — r1: 10 ~ 20

¢ Link weight 74, — r1: 5 ~

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

Tfw
e
Objective ¢:

10 5 10 Traffic from r, to E
must traverse 7.

10

a eBGP session: £ — 1
b Link weight r, — rq: o

¢ Link weight rg, — 712 5 ~

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

Tfw
O

Objective ¢:
10 5 10 Traffic from r, to E
must traverse 74,.
10 ~ 20
b

a eBGP session: £ — 1
b Link weight r, — r1: 10 ~ 20

¢ Link weight rg, — 712 5 ~

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

Tfw
O

c Objective ¢:
10 5~ 9 10 Traffic from r, to E
must traverse 7.
10 ~ 20
b

a eBGP session: £ — 1
b Link weight r, — r1: 10 ~ 20

¢ Link weight 74, — 7r1: 5~ 9

3/27

Careless migration can cause
unallowed and unnecessary traffic shifts

Tfw
@ —()
c Objective ¢:
10 5~ 9 10 Traffic from r, to E
must traverse 7.

0200
b ©

a eBGP session: £ — 711
b Link weight r, — r1: 10 ~ 20

¢ Link weight 74, — 7r1: 5~ 9

3/27

A few best practices exist

NETWORK MERGERS
AND MIGRATIONS

Junos® Design and Implementation

WILEY SERES INCOMMUNICATIONS NETWORKING & DISTREUTED SYSTEMS

GONZALO GOMEZ HERRERO
VWILEY JAN ANTGN BERNAL VAN DER VEN

4/27

Best practices are not enough

5/27

Best practices are not enough

Migration from iBGP full-mesh to route-reflection:

> 50% chance to violate reachability

5/27

Best practices are not enough

Migration from iBGP full-mesh to route-reflection:

> 50% chance to violate reachability
Random order 70%

5/27

Best practices are not enough

Migration from iBGP full-mesh to route-reflection:

> 50% chance to violate reachability

Random order 70%
Best practice order 25%

5/27

Existing systems are limited

Best practice X

6/27

Existing systems are limited

Best practice X X

6/27

Existing systems are limited

Best practice

6/27

Existing systems are limited

Best practice
“Offline” systems

“*Laurent Vanbever et al. “Lossless Migrations of Link-State IGPs". In: /EEE/ACM
Transactions on Networking. 2012

Stefano Vissicchio et al. “Improving Network Agility with Seamless BGP Reconfigura-
tions”. In: IEEE/ACM Transactions on Networking. 2012

6/27

Existing systems are limited

Best practice
“Offline" systems

4
Laurent Vanbever et al. “Lossless Migrations of Link-State IGPs".

Stefano Vissicchio et al. “Improving Network Agility with Seamless BGP Reconfigura-
tions”.

6/27

Existing systems are limited

&
A >
G SRS
07 <O 0\
Y O (@ ¥
S O
S &

Best practice X X X
“Offline” systems * v / /
“Online” systems > v X X

4
Laurent Vanbever et al. “Lossless Migrations of Link-State IGPs".

Stefano Vissicchio et al. “Improving Network Agility with Seamless BGP Reconfigura-

tions”.
5

Pierre Francois et al. “Avoiding Transient Loops During the Convergence of Link-State

Routing Protocols”.

Pierre Francois et al. “Avoiding Disruptions during Maintenance Operations on BGP

Sessions”.

6/27

Existing systems are limited

&‘Z'Qf) >
& o°°\9 & &
¢ & &
@ 98 a7 0

Best practice X X Xx
“Offline” systems* v v / X
“Online” systems®> v X X /
Snowcap v v v/

4
Laurent Vanbever et al. “Lossless Migrations of Link-State IGPs".

Stefano Vissicchio et al. “Improving Network Agility with Seamless BGP Reconfigura-

tions”.
5

Pierre Francois et al. “Avoiding Transient Loops During the Convergence of Link-State

Routing Protocols”.

Pierre Francois et al. “Avoiding Disruptions during Maintenance Operations on BGP

Sessions”.

6/27

Snowcap performs network reconfigurations
automatically and safely

Input Snowcap
C; Cy
¢
— | |||=_ | hard spec —
=||||= f
soft spec

initial & final
configurations

Live Network

7/27

Snowcap performs network reconfigurations
automatically and safely

=

initial & final
configurations

Compute the difference
—» set of commands.

7/27

Snowcap performs network reconfigurations

automatically and safely

Input

¢

hard spec

Describe how
network properties change

7/27

Snowcap's specification language is extremely flexible

e Basic Policies for each flow:
Reachability, isolation, redundancy, waypointing.

¢ Linear Temporal Logic (LTL):

Express how the policy changes during migration.

8/27

Linear Temporal Logic captures policy changes

Firewall migration from r; to ro

(/\ r1 € path, UG ry € pathm>

zeFlows

All flows can switch at different times.

9/27

Linear Temporal Logic captures policy changes

Firewall migration from r{ to oy

< /\ r1 € path, UXG rq € pathm>

z€Flows

All flows are allowed to bypass the firewall for a short time.

9/27

Linear Temporal Logic captures policy changes

Firewall migration from r{ to oy

(/\ 1 epa,th;,;) UG < /\ 7'2€p(1t]?/;5>

zeFlows z€Flows

All flows must change at the same time.

9/27

Snowcap performs network reconfigurations

automatically and safely

Input

f

soft spec

Minimize cost function
— good solution

10/27

Not all correct orderings are created equally

11/27

Not all correct orderings are created equally

cost: 2
/_'
® NS

10 5 10

10 ~ 20

11/27

Not all correct orderings are created equally

cost: 2
wa
@ \ a ¢) cost: 3
7'fw© . ”WK_\Q
10 5 10 50
10 - 20 10 20

11/27

Not all correct orderings are created equally

cost: 2

P SN
2% cost: 3

®
e o T

® &%

cost: 0

11/27

Not all correct orderings are created equally

cost: 2

P SN
2% cost: 3

®
SR CRg

® : cost: 1
L

cost: 0

11/27

Snowcap performs network reconfigurations
automatically and safely

Input

Find a valid and good
ordering of commands and
apply them one-by-one

Snowcap

=

Live Network

12/27

It's all about navigating the search space
of possible reconfiguration orderings

The search space is both

e sparse; and
e huge.

13/27

It's all about navigating the search space
of possible reconfiguration orderings

The search space is both

e sparse; and
e huge.

13/27

It's all about navigating the search space
of possible reconfiguration orderings

The search space is both

e sparse; and
e huge.

13/27

It's all about navigating the search space

of possible reconfiguration orderings

CealdUed gy
bcd B
The search space is both &dlao CeoWUadgrs

c

7
a C
e sparse; and @ i

e huge. an,
GrEY.) o @d gdd

lab) o
@

(@ cld

© @) (@ bld—(at

@ @dio
arn,
cldab
e Daraa@so @labd
Tdba A\ 13/27

1. Exploration
How does Snowcap solve simple scenarios?

2. Counter-example-guided search
How does Snowcap solve more difficult scenarios?

3. Evaluation
How efficient and effective is Snowcap?

14 /27

1. Exploration
How does Snowcap solve simple scenarios?

14 /27

The exploration algorithm is based on DFS traversal

a eBGP session: & — 1
b Link weight r, — rq: ~

¢ Link weight r4, — r1: 5 ~

15/27

The exploration algorithm is based on DFS traversal

a eBGP session: E — 1

b Link weight r, — rq: ~

¢ Link weight r4, — r1: 5 ~

15/27

Sequences with a known, bad prefix are not explored

a eBGP session: E — 1

b Link weight r, — rq: ~

¢ Link weight r4, — r1: 5 ~

15/27

Greedy minimization of the cost function

Tfw
@
() 10 5 20

b

(o) 20

a eBGP session: & — 1
b Link weight r, — r1: 10 ~ 20

¢ Link weight r4, — r1: 5 ~

15/27

Greedy minimization of the cost function

Tfw
B
() 10 9 20
(©) 10

a eBGP session: & — 1
b Link weight r, — rq: ~
¢ Link weight r4, — r1: 5~ 9

15/27

Greedy minimization of the cost function

Tfw
@
() 10 5 20

b

0 20
w a eBGP session: & — 1

b Link weight r, — r1: 10 ~ 20

¢ Link weight 75, — r1: 5 ~

15/27

Greedy minimization of the cost function

a eBGP session: E — 1
b Link weight r, — r1: 10 ~ 20

¢ Link weight 75, — r1: 5 ~

15/27

Greedy minimization of the cost function

10 9 20

a eBGP session: £ — 1
b Link weight r, — r1: 10 ~ 20
¢ Link weight r4, — r1: 5~ 9

15/27

Greedy minimization of the cost function

10 9 20

a eBGP session: £ — 1
b Link weight r, — r1: 10 ~ 20

¢ Link weight r4, — r1: 5~ 9

15/27

Greedy minimization of the cost function

a eBGP session: E — 1
b Link weight r, — r1: 10 ~ 20

¢ Link weight r4, — r1: 5~ 9

15/27

Greedy minimization of the cost function

a eBGP session: E — 1
b Link weight r, — r1: 10 ~ 20

¢ Link weight r4, — r1: 5~ 9

15/27

DFS Exploration works well in most cases

Qstu|v) (rstu|w)

However: What if we get stuck?
Bad decision early may cause
problems later.

—» Actively find the problem!

16 /27

DFS Exploration works well in most cases

Qstu|v) (rstu|w)

However: What if we get stuck?
Bad decision early may cause
problems later.

—» Actively find the problem!

16 /27

2. Counter-example-guided search
How does Snowcap solve more difficult scenarios?

17/27

Snowcap uses counter-example-guided search
to resolve difficult dependencies

DFS
Exploration Snowcap ...
e performs normal exploration
() until a dead end

¢ follows a divide-and-conquer
Counter-example- approach

guided search

18/27

b1

bo

Initial configuration

19/27

Initial configuration

19/27

-- -
a==" See
- ~

19/27

19/27

19/27

19/27

Final configuration

19/27

Final configuration

19/27

DFS traversal first applies @ followed by b

19/27

DFS traversal first applies @ followed by b

19/27

DFS traversal first applies @ followed by b

19/27

Either ‘¢ and ‘d will now cause forwarding loops

19/27

Either ‘¢ and ‘d will now cause forwarding loops

19/27

Either ‘¢ and ‘d will now cause forwarding loops

19/27

Reduce to minimal reproducing sequence

20 /27

Reduce to minimal reproducing sequence

b

®
tq
p

reduce ’
current ordering:
.~

(1,

20 /27

Reduce to minimal reproducing sequence

b

®
tq
p

reduce ’
current ordering:
) N

C

20 /27

Reduce to minimal reproducing sequence

reduce

current ordering: (©)

20 /27

Solve the minimal sequence using the DFS algorithm

reduce

current ordering: (©)

20 /27

Extend with yet unused commands

tq
g
reduce ’
[] current ordering:
C

20 /27

Solve the extended sequence

20 /27

Keep the found solution for future iterations

tq
g
reduce ’
[] current ordering:
C

20 /27

3. Evaluation

® How does Snowcap scale?
® How effective is Snowcap?

21/27

We evaluate Snowcap on a wide range of
topologies and migration scenarios

® = 80 Topologies from Topology Zoo®

e Common migration scenarios’

® Random link weights and iBGP topologies.

6
S. Knight et al. “The Internet Topology Zoo". In: /EEE JSAC. 2011.

7 .
Gonzalo Gomez Herrero et al. Network Mergers and Migrations: Junos Design and
Implementation. Vol. 45. John Wiley & Sons, 2011.

22 /27

Snowcap finds solutions within seconds

Migration from iBGP full-mesh to route-reflection.

> 50% chance to violate reachability

Random order 70%
Best practice order 25%

23 /27

Snowcap finds solutions within seconds

Migration from iBGP full-mesh to route-reflection.

> 50% chance to violate reachability time
Random order 70%

Best practice order 25%

Snowcap 0% at most 12s*

*for 3081 commands on 82 routers.

23 /27

Snowcap's runtime scales very well with increasing complexity

Time [s]

10 100
Number of commands

24 /27

Snowcap's runtime scales very well with increasing complexity

Time [s]

random permutations

10 100
Number of commands

24 /27

Snowcap's runtime scales very well with increasing complexity

Time [s]
9 | random permutations
Snowcap
(DFS exploration)
0

10 100
Number of commands

24 /27

Snowcap's runtime scales very well with increasing complexity

Time [s] Time [s]
9 | random permutations
30 |
Snowcap
(DFS exploration)
0 : : 0 1 :
10 100 5 20
Number of commands Number of difficult dependencies

24 /27

Snowcap's runtime scales very well with increasing complexity

Time [s]
9 | random permutations
Snowcap
(DFS exploration)
0

10 100
Number of commands

30 ¢

Time [s]

random
permutations

5 20
Number of difficult dependencies

24 /27

Snowcap's runtime scales very well with increasing complexity

Time [s]
9 | random permutations
Snowcap
(DFS exploration)
0

10 100
Number of commands

30 ¢

Time [s]
DFS
exploration

random
permutations

5 20
Number of difficult dependencies

24 /27

Snowcap's runtime scales very well with increasing complexity

Time [s] Time [s]
random permutations DFS
21 30 1 exploration
Showcap ranqom .
(DFS exploration) permutations nowcap
0 - 1 0 } / :
10 100) 20
Number of commands Number of difficult dependencies

24 /27

Snowcap is effective at finding good orderings

Cost (# of traffic shifts)

55

Network acquisition

25 /27

Snowcap is effective at finding good orderings

Cost (# of traffic shifts)

random
permutations

Network acquisition

55

25 /27

Snowcap is effective at finding good orderings

Cost (# of traffic shifts)

Snowcap

random
permutations

55

Network acquisition

25 /27

Snowcap is effective at finding good orderings

Cost (# of traffic shifts)

Snowcap

random
permutations

Network acquisition

Cost (# of traffic shifts)

Snowcap

random
permutations

78

Double all link weights

25 /27

Predictable overhead for Snowcap's greedy optimization
of states explored

107 |

10° |

10° |

10! |

79
Networks from Topology Zoo

26 /27

Predictable overhead for Snowcap's greedy optimization
of states explored

107 |
10° |
10% |

Snowcap (¢ only)

10! §

79
Networks from Topology Zoo

26 /27

Predictable overhead for Snowcap's greedy optimization
of states explored

107 |
Snowcap (¢ and f)

10° |

10% |

Snowcap (¢ only)

101 |

79
Networks from Topology Zoo

26 /27

Predictable overhead for Snowcap's greedy optimization

of states explored

. random order (¢ only)
107 1
Snowcap (¢ and f)\
10° |
10° |
Snowcap (¢ onl
Lo | p (¢ only)

79
Networks from Topology Zoo

26 /27

Snowcap guarantees safe network reconfigurations

Snowcap is open-source
https://snowcap.ethz.ch

Snowcap: Synthesizing Network-Wide
Configuration Updates

Tibor Schneider Riidiger Birkner ~ Laurent Vanbever

https://nsg.ee.ethz.ch

Input
C; Cy Snowcap Live Network
= |||=_ hard spec
Sy
o soft spec
initial & final

config

