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ABSTRACT

Network-wide migrations of a running network, such as
the replacement of a routing protocol or the modification of
its configuration, can improve the performance, scalability,
manageability, and security of the entire network. However,
such migrations are an important source of concerns for net-
work operators as the reconfiguration campaign can lead to
long and service-affecting outages.

In this paper, we propose a methodology which addresses
the problem of seamlessly modifying the configuration of
commonly used link-state Interior Gateway Protocols (IGP).
We illustrate the benefits of our methodology by consider-
ing several migration scenarios, including the addition or the
removal of routing hierarchy in an existing IGP and the re-
placement of one IGP with another. We prove that a strict
operational ordering can guarantee that the migration will
not create IP transit service outages. Although finding a safe
ordering is NP-complete, we describe techniques which effi-
ciently find such an ordering and evaluate them using both
real-world and inferred ISP topologies. Finally, we describe
the implementation of a provisioning system which automat-
ically performs the migration by pushing the configurations
on the routers in the appropriate order, while monitoring
the entire migration process.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks|: Network Operations

General Terms: Algorithms, Management, Reliability

Keywords: Interior Gateway Protocol (IGP), configura-
tion, migration, summarization, design guidelines
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As the network grows or when new services have to be de-
ployed, network operators often need to perform large-scale
IGP reconfiguration [1|. Migrating an IGP is a complex pro-
cess since all the routers have to be reconfigured in a proper
manner. Simple solutions like restarting the network with
the new configurations do not work since most of the net-
works carry traffic 24/7. Therefore, IGP migrations have
to be performed gradually, while the network is running.
Such operations can lead to significant traffic losses if they
are not handled with care. Unfortunately, network operators
typically lack appropriate tools and techniques to seamlessly
perform large, highly distributed changes to the configura-
tion of their networks. They also experience difficulties in
understanding what is happening during a migration since
complex interactions may arise between upgraded and non-
upgraded routers. Consequently, as confirmed by many pri-
vate communications with operators, large-scale IGP migra-
tions are often avoided until they are absolutely necessary,
thus hampering network evolvability and innovation.

Most of the time, network operators target three aspects
of the IGP when they perform large-scale migrations. First,
they may want to replace the current protocol with another.
For instance, several operators have switched from OSPF
to IS-IS because IS-IS is known to be more secure against
control-plane attacks [2, 3]. Operators may also want to
migrate to an IGP that is not dependent on the address
family (e.g., OSPFv3, IS-IS) in order to run only one IGP
to route both IPv4 and IPv6 traffic [4, 3|, or to change IGP
in order to integrate new equipments which are not compli-
ant with the adopted one [5]. Second, when the number of
routers exceeds a certain critical mass, operators often intro-
duce a hierarchy within their IGP to limit the control-plane
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Finding an ordering preserving reachability is hard

Prove that finding an ordering is NP-complete

Design practical algorithms and heuristics

Implement an orchestration system



My first SIGCOMM paper (2011)

Seamless Network-Wide IGP Migrations

~Laurent Vanbever; Stefano Vissicchio]
Cristel Pelsser! Pierre Francois: Olivier Bonaventure*

* Université catholique de Louvain ' Roma Tre University * Internet Initiative Japan

J{laurent.vanbever, pierre.francois, olivier.oonaventure} @uclouvain.be

fvissicch@dia.uniromas.it

ABSTRACT

Network-wide migrations of a running network, such as
the replacement of a routing protocol or the modification of
its configuration, can improve the performance, scalability,
manageability, and security of the entire network. However,
such migrations are an important source of concerns for net-
work operators as the reconfiguration campaign can lead to
long and service-affecting outages.

In this paper, we propose a methodology which addresses
the problem of seamlessly modifying the configuration of
commonly used link-state Interior Gateway Protocols (IGP).
We illustrate the benefits of our methodology by consider-
ing several migration scenarios, including the addition or the
removal of routing hierarchy in an existing IGP and the re-
placement of one IGP with another. We prove that a strict
operational ordering can guarantee that the migration will
not create IP transit service outages. Although finding a safe
ordering is NP-complete, we describe techniques which effi-
ciently find such an ordering and evaluate them using both
real-world and inferred ISP topologies. Finally, we describe
the implementation of a provisioning system which automat-
ically performs the migration by pushing the configurations
on the routers in the appropriate order, while monitoring
the entire migration process.
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As the network grows or when new services have to be de-
ployed, network operators often need to perform large-scale
IGP reconfiguration [1|. Migrating an IGP is a complex pro-
cess since all the routers have to be reconfigured in a proper
manner. Simple solutions like restarting the network with
the new configurations do not work since most of the net-
works carry traffic 24/7. Therefore, IGP migrations have
to be performed gradually, while the network is running.
Such operations can lead to significant traffic losses if they
are not handled with care. Unfortunately, network operators
typically lack appropriate tools and techniques to seamlessly
perform large, highly distributed changes to the configura-
tion of their networks. They also experience difficulties in
understanding what is happening during a migration since
complex interactions may arise between upgraded and non-
upgraded routers. Consequently, as confirmed by many pri-
vate communications with operators, large-scale IGP migra-
tions are often avoided until they are absolutely necessary,
thus hampering network evolvability and innovation.

Most of the time, network operators target three aspects
of the IGP when they perform large-scale migrations. First,
they may want to replace the current protocol with another.
For instance, several operators have switched from OSPF
to IS-IS because IS-IS is known to be more secure against
control-plane attacks [2, 3]. Operators may also want to
migrate to an IGP that is not dependent on the address
family (e.g., OSPFv3, IS-IS) in order to run only one IGP
to route both IPv4 and IPv6 traffic [4, 3|, or to change IGP
in order to integrate new equipments which are not compli-
ant with the adopted one [5]. Second, when the number of
routers exceeds a certain critical mass, operators often intro-
duce a hierarchy within their IGP to limit the control-plane
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ABSTRACT

Large-scale reconfiguration campaigns tend to be nerve-racking for
network operators as they can lead to significant network down-
times, decreased performance, and policy violations. Unfortunately,
existing reconfiguration frameworks often fall short in practice as
they either only support a small set of reconfiguration scenarios or
simply do not scale.

We address these problems with Snowcap, the first network
reconfiguration framework which can synthesize configuration
updates that comply with arbitrary hard and soft specifications,
and involve arbitrary routing protocols. Our key contribution is
an efficient search procedure which leverages counter-examples
to efficiently navigate the space of configuration updates. Given a
reconfiguration ordering which violates the desired specifications,
our algorithm automatically identifies the problematic commands
so that it can avoid this particular order in the next iteration.

We fully implemented Snowcap and extensively evaluated its
scalability and effectiveness on real-world topologies and typical,
large-scale reconfiguration scenarios. Even for large topologies,
Snowcap finds a valid reconfiguration ordering with minimal side-
effects (i.e., traffic shifts) within a few seconds at most.
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Figure 1: This scenario consists of adding an eBGP session «

and adapting two link weights: » and ¢, while: (i) ensuring
traffic from ry always flows via rg,; and (ii) minimizing traf-
fic shifts. Two orderings achieve both goals: and (cba).

1 INTRODUCTION

Network operators reconfigure their network literally every day [17,
27,39, 40, 45]. In a Tier-1 ISP for example, network operators modify
their BGP configurations up to ~20 times per day on average [45].

While most of these reconfigurations are small (e.g., adding a
new BGP session), a non-negligible fraction is large-scale. Common
examples include switching routing protocols (e.g., from OSPF to
IS-IS [19]), adopting a more scalable routing organization (e.g.,
route reflection [37]), or absorbing another network [23]. As an
illustration, Google’s data center networks have undergone no less
than 5 large-scale configuration changes within the last decade [36].

Small or large, network reconfigurations consist in modifying
the configuration of one or more network devices. Due to the dis-
tributed nature of networks, applying all reconfiguration commands
atomically—on all devices—is impossible. Instead, the network nec-
essarily transitions through a series of intermediate configurations,
each of which inducing possibly distinct routing and forwarding
states. Doing so the network might temporarily violate important
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ABSTRACT

Network-wide migrations of a running network, such as
the replacement of a routing protocol or the modification of
its configuration, can improve the performance, scalability,
manageability, and security of the entire network. However,
such migrations are an important source of concerns for net-
work operators as the reconfiguration campaign can lead to
long and service-affecting outages.

In this paper, we propose a methodology which addresses
the problem of seamlessly modifying the configuration of
commonly used link-state Interior Gateway Protocols (IGP).
We illustrate the benefits of our methodology by consider-
ing several migration scenarios, including the addition or the
removal of routing hierarchy in an existing IGP and the re-
placement of one IGP with another. We prove that a strict
operational ordering can guarantee that the migration will
not create IP transit service outages. Although finding a safe
ordering is NP-complete, we describe techniques which effi-
ciently find such an ordering and evaluate them using both
real-world and inferred ISP topologies. Finally, we describe
the implementation of a provisioning system which automat-
ically performs the migration by pushing the configurations
on the routers in the appropriate order, while monitoring
the entire migration process.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks|: Network Operations

General Terms: Algorithms, Management, Reliability

Keywords: Interior Gateway Protocol (IGP), configura-
tion, migration, summarization, design guidelines

1. INTRODUCTION

Among all network routing protocols, link-state Interior
Gateway Protocols (IGPs), like IS-IS and OSPF, play a crit-
ical role. Indeed, an IGP enables end-to-end reachability
between any pair of routers within the network of an Au-
tonomous System (AS). Many other routing protocols, like
BGP, LDP or PIM, also rely on an IGP to properly work.
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As the network grows or when new services have to be de-
ployed, network operators often need to perform large-scale
IGP reconfiguration [1]. Migrating an IGP is a complex pro-
cess since all the routers have to be reconfigured in a proper
manner. Simple solutions like restarting the network with
the new configurations do not work since most of the net-
works carry traffic 24/7. Therefore, IGP migrations have
to be performed gradually, while the network is running.
Such operations can lead to significant traffic losses if they
are not handled with care. Unfortunately, network operators
typically lack appropriate tools and techniques to seamlessly
perform large, highly distributed changes to the configura-
tion of their networks. They also experience difficulties in
understanding what is happening during a migration since
complex interactions may arise between upgraded and non-
upgraded routers. Consequently, as confirmed by many pri-
vate communications with operators, large-scale IGP migra-
tions are often avoided until they are absolutely necessary,
thus hampering network evolvability and innovation.

Most of the time, network operators target three aspects
of the IGP when they perform large-scale migrations. First,
they may want to replace the current protocol with another.
For instance, several operators have switched from OSPF
to IS-IS because IS-IS is known to be more secure against
control-plane attacks [2, 3]. Operators may also want to
migrate to an IGP that is not dependent on the address
family (e.g., OSPFv3, IS-IS) in order to run only one IGP
to route both IPv4 and IPv6 traffic [4, 3], or to change IGP
in order to integrate new equipments which are not compli-
ant with the adopted one [5]. Second, when the number of
routers exceeds a certain critical mass, operators often intro-
duce a hierarchy within their IGP to limit the control-plane
stress [6, 7]. Removing a hierarchy might also be needed, for
instance, to better support some traffic engineering exten-
sions [8]. Another reason operators introduce hierarchy is to
have more control on route propagation by tuning the way
routes are propagated from one portion of the hierarchy to
another [1]. Third, network operators also modify the way
the IGP learns or announces the prefixes by introducing or
removing route summarization. Route summarization is an
efficient way to reduce the number of entries in the routing
tables of the routers as IGP networks can currently track
as many as 10,000 prefixes [9]. Route summarization also
helps improving the stability by limiting the visibility of lo-
cal events. Actually, some IGP migrations combine several
of these scenarios, such as the migration from a hierarchi-
cal OSPF to a flat IS-IS [2]. There have also been cases
where, after having performed a migration, the network no
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Figure 1: This scenario consists of adding an eBGP session a

and adapting two link weights: b and c, while: (i) ensuring
traffic from ry always flows via rg,; and (ii) minimizing traf-
fic shifts. Two orderings achieve both goals: and (cba).

1 INTRODUCTION

Network operators reconfigure their network literally every day [17,
27,39, 40, 45]. In a Tier-1 ISP for example, network operators modify
their BGP configurations up to ~20 times per day on average [45].
While most of these reconfigurations are small (e.g., adding a
new BGP session), a non-negligible fraction is large-scale. Common
examples include switching routing protocols (e.g., from OSPF to
IS-IS [19]), adopting a more scalable routing organization (e.g.,
route reflection [37]), or absorbing another network [23]. As an
illustration, Google’s data center networks have undergone no less
than 5 large-scale configuration changes within the last decade [36].
Small or large, network reconfigurations consist in modifying
the configuration of one or more network devices. Due to the dis-
tributed nature of networks, applying all reconfiguration commands
atomically—on all devices—is impossible. Instead, the network nec-
essarily transitions through a series of intermediate configurations,
each of which inducing possibly distinct routing and forwarding
states. Doing so the network might temporarily violate important
invariants or suffer from performance drops even if both the initial
and the final configuration are perfectly correct and verified.
While such reconfiguration issues are transient, they are also
disruptive. Alibaba revealed that the majority of their network inci-
dents (56%) resulted from operators updating configurations [29].
Our case studies (§2) confirm this: even when following best prac-
tices, reconfiguring a network often causes numerous forwarding
anomalies (e.g., loops or blackholes) and unnecessary traffic shifts.
Take the scenario in Fig. 1 as an example. The operators wish
to increase their capacity by establishing a new eBGP session on
ry while, for security reasons, ensuring traffic from r, keeps flow-
ing through rg,. For performance reasons, they also want to avoid
any unnecessary traffic shifts during the reconfiguration. The first
requirement is hard: it has to be maintained throughout the recon-
figuration. In contrast, the second requirement is soft: it should be
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ABSTRACT

Network-wide migrations of a running network, such as
the replacement of a routing protocol or the modification of
its configuration, can improve the performance, scalability,
manageability, and security of the entire network. However,
such migrations are an important source of concerns for net-
work operators as the reconfiguration campaign can lead to
long and service-affecting outages.

In this paper, we propose a methodology which addresses
the problem of seamlessly modifying the configuration of
commonly used link-state Interior Gateway Protocols (IGP).
We illustrate the benefits of our methodology by consider-
ing several migration scenarios, including the addition or the
removal of routing hierarchy in an existing IGP and the re-
placement of one IGP with another. We prove that a strict
operational ordering can guarantee that the migration will
not create IP transit service outages. Although finding a safe
ordering is NP-complete, we describe techniques which effi-
ciently find such an ordering and evaluate them using both
real-world and inferred ISP topologies. Finally, we describe
the implementation of a provisioning system which automat-
ically performs the migration by pushing the configurations
on the routers in the appropriate order, while monitoring
the entire migration process.
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1. INTRODUCTION

Among all network routing protocols, link-state Interior
Gateway Protocols (IGPs), like IS-IS and OSPF, play a crit-
ical role. Indeed, an IGP enables end-to-end reachability
between any pair of routers within the network of an Au-
tonomous System (AS). Many other routing protocols, like
BGP, LDP or PIM, also rely on an IGP to properly work.
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As the network grows or when new services have to be de-
ployed, network operators often need to perform large-scale
IGP reconfiguration [1]. Migrating an IGP is a complex pro-
cess since all the routers have to be reconfigured in a proper
manner. Simple solutions like restarting the network with
the new configurations do not work since most of the net-
works carry traffic 24/7. Therefore, IGP migrations have
to be performed gradually, while the network is running.
Such operations can lead to significant traffic losses if they
are not handled with care. Unfortunately, network operators
typically lack appropriate tools and techniques to seamlessly
perform large, highly distributed changes to the configura-
tion of their networks. They also experience difficulties in
understanding what is happening during a migration since
complex interactions may arise between upgraded and non-
upgraded routers. Consequently, as confirmed by many pri-
vate communications with operators, large-scale IGP migra-
tions are often avoided until they are absolutely necessary,
thus hampering network evolvability and innovation.

Most of the time, network operators target three aspects
of the IGP when they perform large-scale migrations. First,
they may want to replace the current protocol with another.
For instance, several operators have switched from OSPF
to IS-IS because IS-IS is known to be more secure against
control-plane attacks [2, 3]. Operators may also want to
migrate to an IGP that is not dependent on the address
family (e.g., OSPFv3, IS-IS) in order to run only one IGP
to route both IPv4 and IPv6 traffic [4, 3], or to change IGP
in order to integrate new equipments which are not compli-
ant with the adopted one [5]. Second, when the number of
routers exceeds a certain critical mass, operators often intro-
duce a hierarchy within their IGP to limit the control-plane
stress [6, 7]. Removing a hierarchy might also be needed, for
instance, to better support some traffic engineering exten-
sions [8]. Another reason operators introduce hierarchy is to
have more control on route propagation by tuning the way
routes are propagated from one portion of the hierarchy to
another [1]. Third, network operators also modify the way
the IGP learns or announces the prefixes by introducing or
removing route summarization. Route summarization is an
efficient way to reduce the number of entries in the routing
tables of the routers as IGP networks can currently track
as many as 10,000 prefixes [9]. Route summarization also
helps improving the stability by limiting the visibility of lo-
cal events. Actually, some IGP migrations combine several
of these scenarios, such as the migration from a hierarchi-
cal OSPF to a flat IS-IS [2]. There have also been cases
where, after having performed a migration, the network no
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Figure 1: This scenario consists of adding an eBGP session a

and adapting two link weights: b and c , while: (i) ensuring
traffic from ry always flows via rg,; and (ii) minimizing traf-
fic shifts. Two orderings achieve both goals: and (cba).

1 INTRODUCTION

Network operators reconfigure their network literally every day [17,
27,39, 40, 45]. In a Tier-1 ISP for example, network operators modify
their BGP tonfigurations up to ~20 times per day on average [45].
WE2 & ) nost of these reconfigurations are small (e.g., adding a
new bGr session), a non-negligible fraction is large-scale. Common
examples include switching routing protocols (e.g., from OSPF to
IS-IS [19]), adopting a more scalable routing organization (e.g.,
route reflectica [37]), or absorbing another network [23]. As an
I 5t.~ti0. Gy pg \¢ 5 =11 center networks have undergone no less
tuah's 1arge-scdle conhyguration changes within the last decade [36].
Small or large, network reconfigurations consist in modifying
the configuration of one or more network devices. Due to the dis-
tributed natvre of networks, applying all reconfiguration commands
a == id (lj H n all devices—is impossible. Instead, the network nec-
essarily trdnsicions through a series of intermediate configurations,
each of which inducing possibly distinct routing and forwarding
states. Doing so the network might temporarily violate important
invariants or suffer from performance drops even if both the initial
and the final configuration are perfectly correct and verified.
While such reconfiguration issues are transient, they are also
disruptive. Alibaba revealed that the majority of their network inci-
dents (56%) resulted from operators updating configurations [29].
Our case studies (§2) confirm this: even when following best prac-
tices, reconfiguring a network often causes numerous forwarding
anomalies (e.g., loops or blackholes) and unnecessary traffic shifts.
Take the scenario in Fig. 1 as an example. The operators wish
to increase their capacity by establishing a new eBGP session on
r1 while, for security reasons, ensuring traffic from r, keeps flow-
ing through rg,. For performance reasons, they also want to avoid
any unnecessary traffic shifts during the reconfiguration. The first
requirement is hard: it has to be maintained throughout the recon-
figuration. In contrast, the second requirement is soft: it should be
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ABSTRACT

Network-wide migrations of a running network, such as
the replacement of a routing protocol or the modification of
its configuration, can improve the performance, scalability,
manageability, and security of the entire network. However,
such migrations are an important source of concerns for net-
work operators as the reconfiguration campaign can lead to
long and service-affecting outages.

In this paper, we propose a methodology which addresses
the problem of seamlessly modifying the configuration of
commonly used link-state Interior Gateway Protocols (IGP).
We illustrate the benefits of our methodology by consider-
ing several migration scenarios, including the addition or the
removal of routing hierarchy in an existing IGP and the re-
placement of one IGP with another. We prove that a strict
operational ordering can guarantee that the migration will
not create IP transit service outages. Although finding a safe
ordering is NP-complete, we describe techniques which effi-
ciently find such an ordering and evaluate them using both
real-world and inferred ISP topologies. Finally, we describe
the implementation of a provisioning system which automat-
ically performs the migration by pushing the configurations
on the routers in the appropriate order, while monitoring
the entire migration process.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks|: Network Operations

General Terms: Algorithms, Management, Reliability

Keywords: Interior Gateway Protocol (IGP), configura-
tion, migration, summarization, design guidelines

1. INTRODUCTION

Among all network routing protocols, link-state Interior
Gateway Protocols (IGPs), like IS-IS and OSPF, play a crit-
ical role. Indeed, an IGP enables end-to-end reachability
between any pair of routers within the network of an Au-
tonomous System (AS). Many other routing protocols, like
BGP, LDP or PIM, also rely on an IGP to properly work.
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As the network grows or when new services have to be de-
ployed, network operators often need to perform large-scale
IGP reconfiguration [1]. Migrating an IGP is a complex pro-
cess since all the routers have to be reconfigured in a proper
manner. Simple solutions like restarting the network with
the new configurations do not work since most of the net-
works carry traffic 24/7. Therefore, IGP migrations have
to be performed gradually, while the network is running.
Such operations can lead to significant traffic losses if they
are not handled with care. Unfortunately, network operators
typically lack appropriate tools and techniques to seamlessly
perform large, highly distributed changes to the configura-
tion of their networks. They also experience difficulties in
understanding what is happening during a migration since
complex interactions may arise between upgraded and non-
upgraded routers. Consequently, as confirmed by many pri-
vate communications with operators, large-scale IGP migra-
tions are often avoided until they are absolutely necessary,
thus hampering network evolvability and innovation.

Most of the time, network operators target three aspects
of the IGP when they perform large-scale migrations. First,
they may want to replace the current protocol with another.
For instance, several operators have switched from OSPF
to IS-IS because IS-IS is known to be more secure against
control-plane attacks [2, 3]. Operators may also want to
migrate to an IGP that is not dependent on the address
family (e.g., OSPFv3, IS-IS) in order to run only one IGP
to route both IPv4 and IPv6 traffic [4, 3], or to change IGP
in order to integrate new equipments which are not compli-
ant with the adopted one [5]. Second, when the number of
routers exceeds a certain critical mass, operators often intro-
duce a hierarchy within their IGP to limit the control-plane
stress [6, 7]. Removing a hierarchy might also be needed, for
instance, to better support some traffic engineering exten-
sions [8]. Another reason operators introduce hierarchy is to
have more control on route propagation by tuning the way
routes are propagated from one portion of the hierarchy to
another [1]. Third, network operators also modify the way
the IGP learns or announces the prefixes by introducing or
removing route summarization. Route summarization is an
efficient way to reduce the number of entries in the routing
tables of the routers as IGP networks can currently track
as many as 10,000 prefixes [9]. Route summarization also
helps improving the stability by limiting the visibility of lo-
cal events. Actually, some IGP migrations combine several
of these scenarios, such as the migration from a hierarchi-
cal OSPF to a flat IS-IS [2]. There have also been cases
where, after having performed a migration, the network no
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ABSTRACT

Large-scale reconfiguration campaigns tend to be nerve-racking for
network operators as they can lead to significant network down-
times, decreased performance, and policy violations. Unfortunately,
existing reconfiguration frameworks often fall short in practice as
they either only support a small set of reconfiguration scenarios or
simply do not scale.

We address these problems with Snowcap, the first network
reconfiguration framework which can synthesize configuration
updates that comply with arbitrary hard and soft specifications,
and involve arbitrary routing protocols. Our key contribution is
an efficient search procedure which lev /rz e |0/, t€ ~e7 ar \ples
to efficiently navigate the space of confi| ur iti n.rJa es. JSi*er a
reconfiguration ordering which violates the desired specifications,
our algorithm automatically identifies the problematic commands
so that it can avoid this particular order in the next iteration.

We fully implemented Snowcap and extensively evaluated its
scalability and effectiveness on real-world topologies and typical,
large-scale reconfiguration scenarios. Even for large topologies.
Snowcap finds a valid reconfiguration o1 ig with i [i{ sa'si feq
effects (i.e., traffic shifts) within a few seconas at most.
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Figure 1: This scenario consists of adding an eBGP session a

and adapting two link weights: b and c , while: (i) ensuring
traffic from ry always flows via rg,; and (ii) minimizing traf-
fic shifts. Two orderings achieve both goals: and (cba).

1 INTRODUCTION

Network operators reconfigure their network literally every day [17,
27,39, 40, 45]. In a Tier-1 ISP for example, network operators modify
their BGP tonfigurations up to ~20 times per day on average [45].
WHE: & 1 host of these reconfigurations are small (e.g., adding a
neéw bap session), a non-negligible fraction is large-scale. Common
examples include switching routing protocols (e.g., from OSPF to
IS-IS [19]), adopting a more scalable routing organization (e.g.,
route reflectica [37]), or absorbing another network [23]. As an
I 5t.~ti0. Gy pg \¢ 5 =11 center networks have undergone no less
tuah's 1arge-scdle conhyguration changes within the last decade [36].
Small or large, network reconfigurations consist in modifying
the configuration of one or more network devices. Due to the dis-
tributed natvre of networks, applying all reconfiguration commands
a == id (lj H n all devices—is impossible. Instead, the network nec-
essarily trdnsicions through a series of intermediate configurations,
each of which inducing possibly distinct routing and forwarding
states. Doing so the network might temporarily violate important
invariants or suffer from performance drops even if both the initial
and the final configuration are perfectly correct and verified.
While such reconfiguration issues are transient, they are also
disruptive. Alibaba revealed that the majority of their network inci-
dents (56%) resulted from operators updating configurations [29].
Our case studies (§2) confirm this: even when following best prac-
tices, 1 tconfiguring a network often causes numerous forwarding
apn ng de: (1 (g, l¢ dp |0 [blackholes) and unnecessary traffic shifts.
1oRetde wTenalle in Tig. 1 as an example. The operators wish
to increase their capacity by establishing a new eBGP session on
ry while, for security reasons, ensuring traffic from r, keeps flow-
i/ £ NaArnmmniirarinnn
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requirement is hard: it has to b<' maintained throughout the recon-
figuration. In contrast, the second requirement is soft: it should be
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We've aimed at helping operators bridging this gap
considering three directions

Given specification (¥

and
Verification
Synthesis
Reconfiguration initial and final configuration

c;,

Return

Ci, Ca;, Co, -

C;
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Probabilistic Verification
of Network Configurations

Samuel Timon Petar Laurent Martin
Steffen Gehr Tsankov Vanbever Vechev

mZurlch Networked Systems E SRI L/_\\B



Probabilistic Verification

I
\

l What is the probability of 'E/ ?
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Traffic Engineering
“80% load-balanced”




Probabilistic Verification

What is the probability of 'E/ ?

| — Service Level Agreements (SLA)
high precision “99.99% reachability”
required

Traffic Engineering
“80% load-balanced”
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Attempts: Exploring Failures

Too expensive

Estimation via
sampling

Partial exploration

1107 359 738 M 1854

#scenarios for four 9s, Hoeffding, a = 0.95 ~600x reduction
191 Iinks, Plink failure = 0.001




Overview

AW, _ .
) 'che

BGP + |IGP support V

Scalable




Pruning Failures
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shortest paths
2
A o

Scenarios with same forwarding graph (32 total):

X X

T

27
I:’%

How to find these?

-

* cold edges

'




% for BGP

Algorithm 3 Hot edges for BGP

see paper

1: procedure HotBGr(u, d, Efyg, L)
2: X < nodes in the same partition as u under L
3:  Brp < Topr3(BRr, X) > BGP pre-processing (§4.2)
4: Rrp « RRNX
5. H « A1LSp(Rry,BRry, L) > all shortest paths (Alg. 2)
6: D «— {u} > decision points
7 U {#g | (% ¢) € Staric g N Ergq }
8 U{y | (x,y) € Efwa A NHg(x) # NHg(y) }
9: foreachx € D do
10: H — HUSpr (x,NHg(x)) > shortest path x — Nug (x)
11: H «— HU (StaTicg N Egyg) > traversed static routes
12: if Rry = () then
13: H «— H U ALLSp({u}, Bry) > ensure connectivity

14: return H




% for BGP

Algorithm 3 Hot edges for BGP

10:
11:
12
15

14:

1
2
3
4:
3
6
7
8
9

. procedure HotBGr(u, d, Efyqg, L)

X «— nodes in the same partition as u under L

Bry < Topr3(BRr, X) > BGP pre-processing (§4.2)
Rr; «— RRNX

H «— ArLSp(Rry,Bry, L) > all shortest paths (Alg. 2)
D «— {u} > decision points

U{y | (x,y) € Staticy N Egya)

U{y | (x,y) € Epyg ANHg(x) # NH4(Y) }
for each x € D do

H «— HUSpr(x,NH (X)) > shortest path x — NHg (x)
H — HU (Staticg N Egyg) > traversed static routes
if Rr; = () then

H «— H U ALLSP({u}, Bry) > ensure connectivity

return H

see paper

network partitions

route reflection

dependence on
|IGP costs




% for BGP

Algorithm 3 Hot edges for BGP

p—
<
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: procedure HotBGr(u, d, Efyqg, L)
X «— nodes in the same partition as u under L
Bry < Topr3(BRr, X) > BGP pre-processing (§4.2)
Rr; «— RRNX
H «— AriSp(Rry,Bry, L) > all shortest paths (Alg. 2)
D «— {u} > decision points

U {#g | (% ¢) € Staric g N Ergq }
U{y | (x,y) € Efya ANHg(x) # NHg(y) }
for each x € D do
H — HUSpr(x,NH (X))
H — HU (Staticg N Egyg)
if Rr; = ( then
H «— H U AriSe({u}, Bry)

return H

> shortest path x — NHy (x)

> traversed static

> ensure Conn

see paper

network partitions

route reflection

dependence on
|IGP costs

with correctness proof
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Failure Exploration

Sum up P(| )

Efficiency depends on #*

Very efficient in practice

“Cut off” unlikely scenarios




Implementation

Reachability Path length
Egress Waypointin
O Net P :
nsg-ethz/netdice solation Load balancing

Congestion
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Runtime

Single-flow (e.g. Reachability)

Few minutes for 100s of links for four 9s

For 80% of scenarios, > 50% of links are :>I¢

Multi-flow (e.g. Isolation)

Performance degrades gracefully

Also analyzed
real ISP config

timeout (2 h): 1 2
T 1
Il
T T l J_

H_LH

3

4 5 6 7
number of flows




Runtime

NetDice is

precise and efficient
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NetComplete: Practical Network-Wide
Configuration Synthesis with Autocompletion

Ahmed El-Hassany Petar Tsankov Martin Vechev Laurent Vanbever

USENIX Symposium on Networked Systems Design and Implementation. April 201 8.



NetComplete takes as inputs configuration sketches
together with a set of high-level requirements



NetComplete takes as inputs configuration sketches
together with a set of high-level requirements

A configuration with “holes”



interface TenGigabitEthernetl/1/1 route-map 1imp-pl permit 19

1p address ? ?

ip ospf cost 16 < ? < 106
route-map exp-pl 10

router ospf 100 match community C2

> route-map exp-pl 20

match community C1

router bgp 6500

neighbor AS200 import route-map imp-pl
neighbor AS200 export route-map exp-pl

ip community-1list C1 permit °?

ip community-1list C2 permit °?



NetComplete “autocompletes” the holes such that
the output configuration complies with the requirements



interface TenGigabitEthernetl/1/1 route-map 1imp-pl permit 19

1p address ? ?

ip ospf cost 16 < ? < 106
route-map exp-pl 10

router ospf 100 match community C2

> route-map exp-pl 20

match community C1

router bgp 6500

neighbor AS200 import route-map imp-pl
neighbor AS200 export route-map exp-pl

ip community-1list C1 permit °?

ip community-1list C2 permit °?



interface TenGigabitEthernetl/1/1
ip address 10.0.0.1 255.255.255.254
1p ospf cost 15

router ospf 100
network 10.0.0.1 0.0.0.1 area 0.0.0.0

router bgp 6500

neighbor AS200 import route-map imp-pl
neighbor AS200 export route-map exp-pl

ip community-1list C1l permit 6500:1
ip community-list C2 permit 65600:2

route-map imp-pl permit 10
set community 6500:1
set local-pref 50
route-map exp-pl permit 10
match community C2
route-map exp-pl deny 20
match community C1



NetComplete reduces the autocompletion problem
to a constraint satisfaction problem



protocol semantics

Encode the high-level requirements as a logical formula (in SMT)

partial configurations



protocol semantics

Encode the high-level requirements as a logical formula (in SMT)

partial configurations

Then Use a solver (Z3) to find an assignment for the undefined
configuration variables s.t. the formula evaluates to True



Scalability

#1 #2

network-specific

. partial evaluation
heuristics

search space navigation search space reduction



Consider this initial configuration in which
(A,C) traffic is forwarded along the direct link




For performance reasons,
the operators want to enable load-balancing




What should be the weights for this to happen?
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|

Cost(A—C) = Cost(A—=D—C) < Cost(X)
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This was easy, but...
it does not scale

VX € Paths(A,C)\Reqgs

|

Cost(A—C) = Cost(A—=D—C) < Cost(X)

|

Solve



There can be an exponential number of paths
between A and C...

VX € Paths(A,C)\Reqgs

|

Cost(A—C) = Cost(A—=D—C) < Cost(X)

|

Solve



To scale, NetComplete leverages
Counter-Example Guided Inductive Synthesis (CEGIS)



To scale, NetComplete leverages
Counter-Example Guided Inductive Synthesis (CEGIS)

An contemporary approach to synthesis where
a solution is iteratively learned from counter-examples



While enumerating all paths is hard,
computing shortest paths given weights is easy!



Instead of considering all paths between Xand Y



CEGIS Consider a random subset S of them and
Part 1 synthesize the weights considering S only



CEGIS Consider a random subset S of them and
Part 1 synthesize the weights considering S only

Fast as S is small compared to all paths



CEGIS Consider a random subset S of them and
Part 1 synthesize the weights considering 5 only

intuition Fast as Sis small compared to all paths
but synthesized weights can be wrong



CEGIS
Part 1

CEGIS
Part 2

Consider a random subset S of them and
synthesize the weights considering S only

Check whether the weights found comply
with the requirements over all paths

return
take a counter-example
that violates the Reqgs and add itto S



CEGIS Consider a random subset S of them and

Part 1 synthesize the weights considering S only
CEGIS Check whether the weights found comply
Part 2 with the requirements over all paths

Fast too
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input requirements synthesis procedure

VX € SamplePaths(A,C)\Reqs




input requirements synthesis procedure

VX € SamplePaths(A,C)\Reqs

l

Sample: { [A,B,D,C] }
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input requirements synthesis procedure

VX € SamplePaths(A,C)\Reqs

|

Cost(A—C) = Cost(A—=D—C) < Cost(X)

|

Synthesized weights Solve




The synthesized weights are incorrect:
cost(A - B — C]) = 250 < cost(A — C) = 300

actual path

VX € SamplePaths(A,C)\Reqgs

|

Cost(A—C) = Cost(A—=D—C) < Cost(X)

|

Solve




We simply add the counter example to
SamplePaths and repeat the procedure

VX € SamplePaths(A,C)\Reqs

l

Sample: { [A,B,D,C] } U{ [A,B,C] |




The entire procedure usually converges in few iterations

making it very fast in practice

Network Regs.
Size type
OSPF synthesis Large Simple
time (sec) ECMP
Ordered

settings
16 reqgs, 50% symbolic, 5 repet.
CEGIS enabled

Synthesis
time

14s
13s
249s
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ey N ked S
ETHZzurich , Neworked Systems

Snowcap: Synthesizing Network-Wide
Configuration Updates

Tibor Schneider  Riidiger Birkner  Laurent Vanbever

SIGCOMM'21, August 24, 2021




Snowcap performs network reconfigurations
automatically and safely

Input Snowcap

soft spec
o,
O

Live Network

O
0

initial & final
configurations




't's all about navigating the search space

of possible reconfiguration orderings

The search space is both  @dlao \

e sparse; and
O huge.
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The exploration algorithm is based on DFS traversal



Sequences with a known, bad prefix are not explored

% ® ©
@9 @D




Greedy minimization of the cost function



Greedy minimization of the cost function

A

1 0

0




DFS Exploration works well in most cases

However: What if we get stuck?
Bad decision early may cause
problems later.

— Actively find the problem!

@iD Csiv

[\
Q"stu@ @stu w)




Snowcap uses counter-example-guided search
to resolve difficult dependencies

DFS
Exploration Snowcap . . .
o performs normal exploration
( ) until a dead end

e follows a divide-and-conquer
Counter-example- approach

guided search



We evaluate Snowcap on a wide range of
topologies and migration scenarios

e ~ 80 Topologies from Topology Zoo
e Common migration scenarios

e Random link weights and iBGP topologies.



Snowcap finds solutions within seconds

Migration from iBGP full-mesh to route-reflection.

> 50% chance to violate reachability time
Random order 70%

Best practice order 25%

Snowcap 0% at most 12s*

*for 3081 commands on 82 routers.



Snowcap s runtime scales very well with increasing complexity

Time [s]

A

___— random permutations

Snowcap

(DFS exploration) \
10 100
Number of commands

o
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We have only scratched the surface when it comes to
analyzing network computation

Complexity

Simplicity

Learnability



We have only scratched the surface when it comes to
analyzing network computation

Complexity What's the computational complexity of
configuration verification and synthesis?

Yes. SMT solving works, but is it really needed?
Simplicity

Learnability



We have only scratched the surface when it comes to
analyzing network computation

Complexity

Simplicity What's the simplest computation that can do it all?

and hopefully is easier to verify / synthesize for?

Learnability



We have only scratched the surface when it comes to
analyzing network computation

Complexity

Simplicity

Learnability Can we learn how to invert network computations?

instead of writing inverse models by hands
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Mevci a tous!

Alex Roland! Roland? Albert

Romain

Tobias Coralie

+ all NSG alumnis, collaborators, mentors (esp. Olivier Bonaventure and Jennifer Rexford), and colleagues!!
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