The three tales of (correct) network operations

Laurent Vanbever nsg.ee.ethz.ch

CoNEXT Wed Dec 8 2021

29 April 2011 9:49pm Date

29 April 2011 9:49pm Date

sigcomm11-pc-chairs@acm.org From

Date	29 April 2011 9:49
From	sigcomm11-pc-chai
Subject	Accepted paper #41
Body	Dear Laurent Vanbe
	The ACM SIGCOMM inform you that you the technical progra
	[]

)pm

irs@acm.org

1 "Seamless Network-Wide IGP Migrations"

ever,

A 2011 Conference program committee is delighted to ur paper #41 has been accepted to appear in ram in Toronto.

My first SIGCOMM paper (2011)

ABSTRACT

Network-wide migrations of a running network, such as the replacement of a routing protocol or the modification of its configuration, can improve the performance, scalability, manageability, and security of the entire network. However, such migrations are an important source of concerns for network operators as the reconfiguration campaign can lead to long and service-affecting outages.

In this paper, we propose a methodology which addresses the problem of seamlessly modifying the configuration of commonly used link-state Interior Gateway Protocols (IGP). We illustrate the benefits of our methodology by considering several migration scenarios, including the addition or the removal of routing hierarchy in an existing IGP and the replacement of one IGP with another. We prove that a strict operational ordering can guarantee that the migration will not create IP transit service outages. Although finding a safe ordering is NP-complete, we describe techniques which efficiently find such an ordering and evaluate them using both real-world and inferred ISP topologies. Finally, we describe the implementation of a provisioning system which automatically performs the migration by pushing the configurations on the routers in the appropriate order, while monitoring the entire migration process.

Categories and Subject Descriptors: C.2.3 [Computer-Communication Networks]: Network Operations General Terms: Algorithms, Management, Reliability Keywords: Interior Gateway Protocol (IGP), configuration, migration, summarization, design guidelines

Seamless Network-Wide IGP Migrations

Laurent Vanbever; Stefano Vissicchio; Cristel Pelsser; Pierre Francois; Olivier Bonaventure*

* Université catholique de Louvain [†] Roma Tre University [‡] Internet Initiative Japan *{laurent.vanbever, pierre.francois, olivier.bonaventure} @uclouvain.be vissicch@dia.uniroma3.it ^tcristel@iij.ad.jp

As the network grows or when new services have to be deployed, network operators often need to perform large-scale IGP reconfiguration [1]. Migrating an IGP is a complex process since all the routers have to be reconfigured in a proper manner. Simple solutions like restarting the network with the new configurations do not work since most of the networks carry traffic 24/7. Therefore, IGP migrations have to be performed gradually, while the network is running. Such operations can lead to significant traffic losses if they are not handled with care. Unfortunately, network operators typically lack appropriate tools and techniques to seamlessly perform large, highly distributed changes to the configuration of their networks. They also experience difficulties in understanding what is happening during a migration since complex interactions may arise between upgraded and nonupgraded routers. Consequently, as confirmed by many private communications with operators, large-scale IGP migrations are often avoided until they are absolutely necessary, thus hampering network evolvability and innovation.

Most of the time, network operators target three aspects of the IGP when they perform large-scale migrations. First, they may want to replace the current protocol with another. For instance, several operators have switched from OSPF to IS-IS because IS-IS is known to be more secure against control-plane attacks [2, 3]. Operators may also want to migrate to an IGP that is not dependent on the address family (e.g., OSPFv3, IS-IS) in order to run only one IGP to route both IPv4 and IPv6 traffic [4, 3], or to change IGP in order to integrate new equipments which are not compliant with the adopted one [5]. Second, when the number of routers exceeds a certain critical mass, operators often introduce a hierarchy within their IGP to limit the control-plane

How do you reconfigure a network without loosing reachability?

final forwarding state

How do you reconfigure a network without loosing reachability?

intermediate

What if we reconfigure D first?

intermediate forwarding state

What if we reconfigure D first?

intermediate forwarding state

What if we reconfigure D first? We create a forwarding loop

intermediate forwarding state

What if we reconfigure C first?

intermediate forwarding state

What if we reconfigure C first?

Works!

How do you reconfigure a network without loosing reachability?

This was easy to compute for *one* destination, but...

How do you reconfigure a network without loosing reachability?

This was easy to compute for *one* destination, but...

what if you have many?

Finding an ordering preserving reachability is hard

Contributions

Implement an orchestration system which applies the updates to a live network

Prove that finding an ordering is NP-complete by reducing from the 3-SAT problem

Design practical algorithms and heuristics based on necessary/sufficient conditions

My first SIGCOMM paper (2011)

ABSTRACT

Network-wide migrations of a running network, such as the replacement of a routing protocol or the modification of its configuration, can improve the performance, scalability, manageability, and security of the entire network. However, such migrations are an important source of concerns for network operators as the reconfiguration campaign can lead to long and service-affecting outages.

In this paper, we propose a methodology which addresses the problem of seamlessly modifying the configuration of commonly used link-state Interior Gateway Protocols (IGP). We illustrate the benefits of our methodology by considering several migration scenarios, including the addition or the removal of routing hierarchy in an existing IGP and the replacement of one IGP with another. We prove that a strict operational ordering can guarantee that the migration will not create IP transit service outages. Although finding a safe ordering is NP-complete, we describe techniques which efficiently find such an ordering and evaluate them using both real-world and inferred ISP topologies. Finally, we describe the implementation of a provisioning system which automatically performs the migration by pushing the configurations on the routers in the appropriate order, while monitoring the entire migration process.

Categories and Subject Descriptors: C.2.3 [Computer-Communication Networks]: Network Operations General Terms: Algorithms, Management, Reliability Keywords: Interior Gateway Protocol (IGP), configuration, migration, summarization, design guidelines

Seamless Network-Wide IGP Migrations

Laurent Vanbever; Stefano Vissicchio; Cristel Pelsser; Pierre Francois; Olivier Bonaventure*

* Université catholique de Louvain [†] Roma Tre University [‡] Internet Initiative Japan *{laurent.vanbever, pierre.francois, olivier.bonaventure} @uclouvain.be vissicch@dia.uniroma3.it ^tcristel@iij.ad.jp

As the network grows or when new services have to be deployed, network operators often need to perform large-scale IGP reconfiguration [1]. Migrating an IGP is a complex process since all the routers have to be reconfigured in a proper manner. Simple solutions like restarting the network with the new configurations do not work since most of the networks carry traffic 24/7. Therefore, IGP migrations have to be performed gradually, while the network is running. Such operations can lead to significant traffic losses if they are not handled with care. Unfortunately, network operators typically lack appropriate tools and techniques to seamlessly perform large, highly distributed changes to the configuration of their networks. They also experience difficulties in understanding what is happening during a migration since complex interactions may arise between upgraded and nonupgraded routers. Consequently, as confirmed by many private communications with operators, large-scale IGP migrations are often avoided until they are absolutely necessary, thus hampering network evolvability and innovation.

Most of the time, network operators target three aspects of the IGP when they perform large-scale migrations. First, they may want to replace the current protocol with another. For instance, several operators have switched from OSPF to IS-IS because IS-IS is known to be more secure against control-plane attacks [2, 3]. Operators may also want to migrate to an IGP that is not dependent on the address family (e.g., OSPFv3, IS-IS) in order to run only one IGP to route both IPv4 and IPv6 traffic [4, 3], or to change IGP in order to integrate new equipments which are not compliant with the adopted one [5]. Second, when the number of routers exceeds a certain critical mass, operators often introduce a hierarchy within their IGP to limit the control-plane

Our last SIGCOMM paper (2021)

Snowcap: Synthesizing Network-Wide Configuration Updates

Tibor Schneider ETH Zurich, Switzerland sctibor@ethz.ch

ABSTRACT

Large-scale reconfiguration campaigns tend to be nerve-racking for network operators as they can lead to significant network downtimes, decreased performance, and policy violations. Unfortunately, existing reconfiguration frameworks often fall short in practice as they either only support a small set of reconfiguration scenarios or simply do not scale.

We address these problems with Snowcap, the first network reconfiguration framework which can synthesize configuration updates that comply with arbitrary hard and soft specifications, and involve arbitrary routing protocols. Our key contribution is an efficient search procedure which leverages counter-examples to efficiently navigate the space of configuration updates. Given a reconfiguration ordering which violates the desired specifications, our algorithm automatically identifies the problematic commands so that it can avoid this particular order in the next iteration. We fully implemented Snowcap and extensively evaluated its scalability and effectiveness on real-world topologies and typical, large-scale reconfiguration scenarios. Even for large topologies, Snowcap finds a valid reconfiguration ordering with minimal side-

effects (i.e., traffic shifts) within a few seconds at most.

CCS CONCEPTS

 Networks → Network management; Network reliability; Network simulations; • Theory of computation \rightarrow Modal and temporal logics; Logic and verification;

KEYWORDS

Network analysis, Configuration, Migration

ACM Reference Format: Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever. 2021. Snow-

Rüdiger Birkner ETH Zurich, Switzerland rbirkner@ethz.ch

Laurent Vanbever ETH Zurich, Switzerland lvanbever@ethz.ch

Figure 1: This scenario consists of adding an eBGP session a and adapting two link weights: b and c, while: (i) ensuring traffic from r_x always flows via r_{fw} ; and (ii) minimizing traffic shifts. Two orderings achieve both goals: (b c a) and (c b a).

1 INTRODUCTION

Network operators reconfigure their network literally every day [17, 27, 39, 40, 45]. In a Tier-1 ISP for example, network operators modify their BGP configurations up to ≈ 20 times per day on average [45].

While most of these reconfigurations are small (e.g., adding a new BGP session), a non-negligible fraction is large-scale. Common examples include switching routing protocols (e.g., from OSPF to IS-IS [19]), adopting a more scalable routing organization (e.g., route reflection [37]), or absorbing another network [23]. As an illustration, Google's data center networks have undergone no less than 5 large-scale configuration changes within the last decade [36].

Small or large, network reconfigurations consist in modifying the configuration of one or more network devices. Due to the distributed nature of networks, applying all reconfiguration commands atomically-on all devices-is impossible. Instead, the network necessarily transitions through a series of intermediate configurations, each of which inducing possibly distinct routing and forwarding states. Doing so the network might temporarily violate important

Have we just come full circle?

SIGCOMM 2011

Seamless Network-Wide IGP Migrations

Laurent Vanbever; Stefano Vissicchio; Cristel Pelsser; Pierre Francois; Olivier Bonaventure*

* Université catholique de Louvain [†] Roma Tre University [‡] Internet Initiative Japan *{laurent.vanbever, pierre.francois, olivier.bonaventure} @uclouvain.be [†]vissicch@dia.uniroma3.it [‡]cristel@iij.ad.jp

ABSTRACT

Network-wide migrations of a running network, such as the replacement of a routing protocol or the modification of its configuration, can improve the performance, scalability, manageability, and security of the entire network. However, such migrations are an important source of concerns for network operators as the reconfiguration campaign can lead to long and service-affecting outages.

In this paper, we propose a methodology which addresses the problem of seamlessly modifying the configuration of commonly used link-state Interior Gateway Protocols (IGP). We illustrate the benefits of our methodology by considering several migration scenarios, including the addition or the removal of routing hierarchy in an existing IGP and the replacement of one IGP with another. We prove that a strict operational ordering can guarantee that the migration will not create IP transit service outages. Although finding a safe ordering is NP-complete, we describe techniques which efficiently find such an ordering and evaluate them using both real-world and inferred ISP topologies. Finally, we describe the implementation of a provisioning system which automatically performs the migration by pushing the configurations on the routers in the appropriate order, while monitoring the entire migration process.

Categories and Subject Descriptors: C.2.3 [Computer-Communication Networks]: Network Operations

General Terms: Algorithms, Management, Reliability

Keywords: Interior Gateway Protocol (IGP), configuration, migration, summarization, design guidelines

1. INTRODUCTION

Among all network routing protocols, link-state Interior Gateway Protocols (IGPs), like IS-IS and OSPF, play a critical role. Indeed, an IGP enables end-to-end reachability between any pair of routers within the network of an Autonomous System (AS). Many other routing protocols, like BGP, LDP or PIM, also rely on an IGP to properly work.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

SIGCOMM'11, August 15–19, 2011, Toronto, Ontario, Canada. Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...\$10.00.

As the network grows or when new services have to be deployed, network operators often need to perform large-scale IGP reconfiguration [1]. Migrating an IGP is a complex process since all the routers have to be reconfigured in a proper manner. Simple solutions like restarting the network with the new configurations do not work since most of the networks carry traffic 24/7. Therefore, IGP migrations have to be performed gradually, while the network is running. Such operations can lead to significant traffic losses if they are not handled with care. Unfortunately, network operators typically lack appropriate tools and techniques to seamlessly perform large, highly distributed changes to the configuration of their networks. They also experience difficulties in understanding what is happening during a migration since complex interactions may arise between upgraded and nonupgraded routers. Consequently, as confirmed by many private communications with operators, large-scale IGP migrations are often avoided until they are absolutely necessary, thus hampering network evolvability and innovation.

Most of the time, network operators target three aspects of the IGP when they perform large-scale migrations. First, they may want to replace the current protocol with another. For instance, several operators have switched from OSPF to IS-IS because IS-IS is known to be more secure against control-plane attacks [2, 3]. Operators may also want to migrate to an IGP that is not dependent on the address family (e.g., OSPFv3, IS-IS) in order to run only one IGP to route both IPv4 and IPv6 traffic [4, 3], or to change IGP in order to integrate new equipments which are not compliant with the adopted one [5]. Second, when the number of routers exceeds a certain critical mass, operators often introduce a hierarchy within their IGP to limit the control-plane stress [6, 7]. Removing a hierarchy might also be needed, for instance, to better support some traffic engineering extensions [8]. Another reason operators introduce hierarchy is to have more control on route propagation by tuning the way routes are propagated from one portion of the hierarchy to another [1]. Third, network operators also modify the way the IGP learns or announces the prefixes by introducing or removing route summarization. Route summarization is an efficient way to reduce the number of entries in the routing tables of the routers as IGP networks can currently track as many as 10,000 prefixes [9]. Route summarization also helps improving the stability by limiting the visibility of local events. Actually, some IGP migrations combine several of these scenarios, such as the migration from a hierarchical OSPF to a flat IS-IS [2]. There have also been cases where, after having performed a migration, the network no

SIGCOMM 2021

Snowcap: Synthesizing Network-Wide Configuration Updates

Tibor Schneider ETH Zurich, Switzerland sctibor@ethz.ch Rüdiger Birkner ETH Zurich, Switzerland rbirkner@ethz.ch Laurent Vanbever ETH Zurich, Switzerland lvanbever@ethz.ch

ABSTRACT

Large-scale reconfiguration campaigns tend to be nerve-racking for network operators as they can lead to significant network downtimes, decreased performance, and policy violations. Unfortunately, existing reconfiguration frameworks often fall short in practice as they either only support a small set of reconfiguration scenarios or simply do not scale.

We address these problems with Snowcap, the first network reconfiguration framework which can synthesize configuration updates that comply with arbitrary hard and soft specifications, and involve arbitrary routing protocols. Our key contribution is an efficient search procedure which leverages counter-examples to efficiently navigate the space of configuration updates. Given a reconfiguration ordering which violates the desired specifications, our algorithm automatically identifies the problematic commands so that it can avoid this particular order in the next iteration.

We fully implemented Snowcap and extensively evaluated its scalability and effectiveness on real-world topologies and typical, large-scale reconfiguration scenarios. Even for large topologies, Snowcap finds a valid reconfiguration ordering with minimal sideeffects (i.e., traffic shifts) within a few seconds at most.

CCS CONCEPTS

• Networks \rightarrow Network management; Network reliability; Network simulations; • Theory of computation \rightarrow Modal and temporal logics; Logic and verification;

KEYWORDS

Network analysis, Configuration, Migration

ACM Reference Format:

Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever. 2021. Snowcap: Synthesizing Network-Wide Configuration Updates. In ACM SIGCOMM 2021 Conference (SIGCOMM '21), August 23–28, 2021, Virtual Event, USA. ACM, New York, NY, USA, 17 pages. https://doi.org/ 10.1145/3452296.3472915

https://doi.org/10.1145/3452296.3472915

Figure 1: This scenario consists of adding an eBGP session a and adapting two link weights: b and c, while: (i) ensuring traffic from r_x always flows via r_{fw} ; and (ii) minimizing traffic shifts. Two orderings achieve both goals: bca and cba.

1 INTRODUCTION

Network operators reconfigure their network literally every day [17, 27, 39, 40, 45]. In a Tier-1 ISP for example, network operators modify their BGP configurations up to ≈ 20 times per day on average [45].

While most of these reconfigurations are small (e.g., adding a new BGP session), a non-negligible fraction is large-scale. Common examples include switching routing protocols (e.g., from OSPF to IS-IS [19]), adopting a more scalable routing organization (e.g., route reflection [37]), or absorbing another network [23]. As an illustration, Google's data center networks have undergone no less than 5 large-scale configuration changes within the last decade [36].

Small or large, network reconfigurations consist in modifying the configuration of one or more network devices. Due to the distributed nature of networks, applying all reconfiguration commands atomically—on all devices—is impossible. Instead, the network necessarily transitions through a series of intermediate configurations, each of which inducing possibly distinct routing and forwarding states. Doing so the network might temporarily violate important invariants or suffer from performance drops *even if* both the initial and the final configuration are perfectly correct and verified.

While such reconfiguration issues are transient, they are also disruptive. Alibaba revealed that the majority of their network incidents (56%) resulted from operators updating configurations [29]. Our case studies (§2) confirm this: even when following best practices, reconfiguring a network often causes numerous forwarding anomalies (e.g., loops or blackholes) and unnecessary traffic shifts.

Take the scenario in Fig. 1 as an example. The operators wish to increase their capacity by establishing a new eBGP session on r_1 while, for security reasons, ensuring traffic from r_x keeps flowing through r_{fw} . For performance reasons, they also want to avoid any unnecessary traffic shifts during the reconfiguration. The first requirement is *hard*: it has to be maintained throughout the reconfiguration. In contrast, the second requirement is *soft*: it should be

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. SIGCOMM '21. August 23–28. 2021. Virtual Event. USA

^{© 2021} Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery. ACM ISBN 978-1-4503-8383-7/21/08...\$15.00

Seamless Network-Wide IGP Migrations

Laurent Vanbever; Stefano Vissicchio; Cristel Pelsser; Pierre Francois; Olivier Bonaventure

* Université catholique de Louvain [†] Roma Tre University [‡] Internet Initiative Japan *{laurent.vanbever, pierre.francois, olivier.bonaventure} @uclouvain.be †vissicch@dia.uniroma3.it [‡]cristel@iij.ad.jp

ABSTRACT

Network-wide migrations of a running network, such as the replacement of a routing protocol or the modification of its configuration, can improve the performance, scalability, manageability, and security of the entire network. However, such migrations are an important source of concerns for network operators as the reconfiguration campaign can lead to long and service-affecting outages.

In this paper, we propose a methodology which addresses the problem of seamlessly modifying the configuration of commonly used link-state Interior Gateway Protocols (IGP). We illustrate the benefits of our methodology by considering several migration scenarios, including the addition or the removal of routing hierarchy in an existing IGP and the replacement of one IGP with another. We prove that a strict operational ordering can guarantee that the migration will not create IP transit service outages. Although finding a safe ordering is NP-complete, we describe techniques which efficiently find such an ordering and evaluate them using both real-world and inferred ISP topologies. Finally, we describe the implementation of a provisioning system which automatically performs the migration by pushing the configurations on the routers in the appropriate order, while monitoring the entire migration process.

Categories and Subject Descriptors: C.2.3 [Computer-Communication Networks]: Network Operations

General Terms: Algorithms, Management, Reliability

Keywords: Interior Gateway Protocol (IGP), configuration, migration, summarization, design guidelines

1. INTRODUCTION

Among all network routing protocols, link-state Interior Gateway Protocols (IGPs), like IS-IS and OSPF, play a critical role. Indeed, an IGP enables end-to-end reachability between any pair of routers within the network of an Autonomous System (AS). Many other routing protocols, like BGP, LDP or PIM, also rely on an IGP to properly work.

SIGCOMM'11, August 15–19, 2011, Toronto, Ontario, Canada. Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...\$10.00. As the network grows or when new services have to be deployed, network operators often need to perform large-scale IGP reconfiguration [1]. Migrating an IGP is a complex process since all the routers have to be reconfigured in a proper nanner. Simple solutions like restarting the network with the new configurations do not work since most of the networks carry traffic 24/7. Therefore, IGP migrations have to be performed gradually, while the network is running. Such operations can lead to significant traffic losses if they are not handled with care. Unfortunately, network operators typically lack appropriate tools and techniques to seamlessly berform large, highly distributed changes to the configuration of their networks. They also experience difficulties in understanding what is happening during a migration since complex interactions may arise between upgraded and nonupgraded routers. Consequently, as confirmed by many private communications with operators, large-scale IGP migrations are often avoided until they are absolutely necessary, thus hampering network evolvability and innovation.

Most of the time, network operators target three aspects of the IGP when they perform large-scale migrations. First, hey may want to replace the current protocol with another. For instance, several operators have switched from OSPF o IS-IS because IS-IS is known to be more secure against control-plane attacks [2, 3]. Operators may also want to nigrate to an IGP that is not dependent on the address amily (e.g., OSPFv3, IS-IS) in order to run only one IGP o route both IPv4 and IPv6 traffic [4, 3], or to change IGP n order to integrate new equipments which are not compliant with the adopted one [5]. Second, when the number of couters exceeds a certain critical mass, operators often introluce a hierarchy within their IGP to limit the control-plane tress [6, 7]. Removing a hierarchy might also be needed, for nstance, to better support some traffic engineering extentions [8]. Another reason operators introduce hierarchy is to nave more control on route propagation by tuning the way outes are propagated from one portion of the hierarchy to mother [1]. Third, network operators also modify the way he IGP learns or announces the prefixes by introducing or removing route summarization. Route summarization is an efficient way to reduce the number of entries in the routing ables of the routers as IGP networks can currently track as many as 10,000 prefixes [9]. Route summarization also nelps improving the stability by limiting the visibility of local events. Actually, some IGP migrations combine several of these scenarios, such as the migration from a hierarchical OSPF to a flat IS-IS [2]. There have also been cases where, after having performed a migration, the network no

Snowcap: Synthesizing Network-Wide Configuration Updates

Tibor Schneider ETH Zurich, Switzerland sctibor@ethz.ch Rüdiger Birkner ETH Zurich, Switzerland rbirkner@ethz.ch Laurent Vanbever ETH Zurich, Switzerland lvanbever@ethz.ch

ABSTRACI

Large-scale reconfiguration campaigns tend to be nerve-racking for network operators as they can lead to significant network downtimes, decreased performance, and policy violations. Unfortunately, existing reconfiguration frameworks often fall short in practice as they either only support a small set of reconfiguration scenarios or simply do not scale.

We address these problems with Snowcap, the first network reconfiguration framework which can synthesize configuration updates that comply with arbitrary hard and soft specifications, and involve arbitrary routing protocols. Our key contribution is an efficient search procedure which ley **COLO Color Color**

We fully implemented Snowcap and extensively evaluated its scalability and effectiveness on real-world topologies and typical, large-scale reconfiguration scenarios. Even for large topologies Snowcap finds a valid reconfiguration of the grad with **Open Physical** effects (i.e., traffic shifts) within a few seconds at models of the second second

CCS CONCEPTS

 Networks → Network manageme Network simulations; • Theory of con temporal logics; Logic and verification;

KEYWORDS

Network analysis, Configuration, Mig

ACM Reference Forma

Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever. 2021. Snowcap: Synthesizing Network-Wide Configuration Updates. In ACM SIGCOMM 2021 Conference (SIGCOMM '21), August 23–28, 2021, Virtual Event, USA. ACM, New York, NY, USA, 17 pages. https://doi.org/ 10.1145/3452296.3472915

© 2021 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.

ACM ISBN 770-1-4303-0303-7/21/00...913

Figure 1: This scenario consists of adding an eBGP session *a* and adapting two link weights: *b* and *c*, while: (*i*) ensuring traffic from r_x always flows via r_{fw} ; and (*ii*) minimizing traffic shifts. Two orderings achieve both goals: bca and cba.

1 INTRODUCTION

etwork operators reconfigure their network literally every day [17 7, 39, 40, 45]. In a Tier-1 ISP for example, network operators modify heir BGP configurations up to ≈ 20 times per day on average [45] tost of these reconfigurations are small (e.g., adding a construction of these reconfigurations are small (e.g., adding a construction), a non-negligible fraction is large-scale. Common xamples include switching routing protocols (e.g., from OSPF to 5-IS [19]), adopting a more scalable routing organization (e.g.

The configuration of one or more network devices. Due to the disdiscrete of networks, applying all reconfiguration commands of networks, applying all reconfiguration comm

each of which inducing possibly distinct routing and forwarding tates. Doing so the network might temporarily violate important nvariants or suffer from performance drops *even if* both the initial and the final configuration are perfectly correct and verified.

While such reconfiguration issues are transient, they are also disruptive. Alibaba revealed that the majority of their network inci dents (56%) resulted from operators updating configurations [29] Our case studies (§2) confirm this: even when following best prac tices, reconfiguring a network often causes numerous forwarding anomalies (e.g., loops or blackholes) and unnecessary traffic shifts

Take the scenario in Fig. 1 as an example. The operators wish to increase their capacity by establishing a new eBGP session on r_1 while, for security reasons, ensuring traffic from r_x keeps flowing through r_{fw} . For performance reasons, they also want to avoid any unnecessary traffic shifts during the reconfiguration. The first requirement is *hard*: it has to be maintained throughout the reconfiguration. In contrast, the second requirement is *soft*: it should be

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Seamless Network-Wide IGP Migrations

Laurent Vanbever: Stefano Vissicchio:

ABSTRACT

Keywords: Interior Gateway Protocol (IGP), configura-

1. INTRODUCTION

Snowcap: Synthesizing Network-Wide Configuration Updates

an efficient search procedure which ley minor complex to efficiently navigate the space of configuration of the space of configuration of the space of the space

large-scale reconfiguration scenarios. Ev general Snowcap finds a valid reconfiguration of

 Networks → Network managem Network simulations; • Theory of con

KEYWORDS

Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever. 2021. Snow-SIGCOMM 2021 Conference (SIGCOMM '21), August 23-28, 2021, Virtual Event, USA. ACM, New York, NY, USA, 17 pages. https://doi.org/

and adapting two link weights: b and c, while: (i) ensuring traffic from r_x always flows via r_{fw} ; and (ii) minimizing traffic shifts. Two orderings achieve both goals: (b c a) and (c b a).

1 INTRODUCTION

expressive

efficient all devices – is impossible. Instead, the network nec

or part of this work for personal or at ce the add Shoot and unnecessary traffic shifts. this for the add Shoot and unnecessary traffic shifts.

reason about distributed network computations

Distributed computations rule over network forwarding behavior

distributed algorithms

distributed algorithms

per-device ${\cal F}$ forwarding state

 $\begin{array}{ll} \mbox{per-device} & \mathcal{C} \\ \mbox{configurations} & \end{array} \\ \mbox{topology} & \mathcal{T} \\ \mbox{external routes} & \mathcal{R} \end{array}$

inputs

distributed algorithms

per-device ${\cal F}$ forwarding state

 $\begin{array}{ll} {\sf per-device} & \mathcal{C} \\ {\sf configurations} & \mathcal{C} \\ {\sf topology} & \mathcal{T} \\ {\sf external routes} & \mathcal{R} \end{array}$

inputs

network operators

distributed algorithms

per-device ${\cal F}$ forwarding state

 $\begin{array}{ll} {\sf per-device} & \mathcal{C} \\ {\sf configurations} & \mathcal{C} \\ {\sf topology} & \mathcal{T} \\ {\sf external routes} & \mathcal{R} \end{array}$

inputs

network operators

$\begin{array}{l} \text{high-level} \\ \text{specification} \end{array} \varphi$

distributed algorithms

per-device ${\cal F}$ forwarding state
per-device
configurations \mathcal{C} topology \mathcal{T} external routes \mathcal{R}

inputs

network operators

$\begin{array}{l} \text{high-level} \\ \text{specification} \end{array} \varphi$

distributed algorithms

per-device ${\cal F}$ forwarding state

outputs

inputs

network operators

$\begin{array}{l} \text{high-level} \\ \text{specification} \end{array} \varphi$

distributed algorithms

per-device ${\cal F}$ forwarding state

outputs

Need more proof? Ask our students!

Pre-COVID Mini-Internet hackathon @ETH Zürich

Connectivity statistics (2021)

	123	4 5	67	89	1 1 0 1											4 4 3 4		4	4 7	4 8			56 21				6 (5 (6 8			8 2 1						8 9 9 0			-	0	-	1 1 0 0 4 5	0	0	0	0 1	1 1	1 1 2
G1 G2																																									-	-				,				
G3 G4			+		H	+	H	+		\square	+	╞	+	╀	H	+	+	╞	\vdash		+	+	+	╞	$\left \right $	+	+	╀	╞	$\left \right $	+	+	+	╀	$\left \right $	+	+	+	╀	╞	$\left \right $	+	+	+	+	\vdash	+	+	╀	
G5												t		t															t											t				\pm				\pm		
G6							\square																																				_					\downarrow	_	
G7 G8			+		$\left \right $	+	++	+		\square	+	╞	╉	╀	$\left \right $	+	+	╞	\vdash		+	+	+	╞	$\left \right $	+	+	╋	╞	$\left \right $	╉	+	+	╀	$\left \right $	+	+	+	╀	╞		+	+	+	╀		+	+	╀	
G9												t		t										t																t				1				\pm		
G10 G11							⊢	_			+	╞	_	-		\downarrow	\downarrow	+			\downarrow	\downarrow	+	-		4	\downarrow	_	╞	$\left \right $	+	-	+	╞		4	4	\downarrow	╞	╞		4	\downarrow	\downarrow	╞		4	\downarrow	╀	
G11 G12			+				╉	+		H	+	╞	╉	+	H	+	+	╞	┢		+	+	+	╞	H	+	+	+	╞	H	+	+	+	+	H	+	+	+	╀	╞		+	+	+	╀	\vdash		╈	+	
G21												L					T	t											L					t				Ţ	t	L			1	Ţ	t				t	
G22 G23			+				⊢	+			+	╞	+			+	+	+			\downarrow	+				+	+	_	╞		_		+	╞		_	+	+	╞	╞			+	+	+		_	+	+	
G23 G24		+	+		\mathbb{H}	+	\mathbb{H}	+		\square	+	╞	╉	┼	$\left \right $	+	╈	┼	\vdash		+	+	+	╞	$\left \right $	+	+	╈	┢	$\left \right $		+	+	╈	$\left \right $	+	╉	+	╈	┢		┥	+	+	╈		+	+	╈	
G25							Ш							t																														Ţ				Ţ		
G26 G27			+		\square	+	\square	+			+	╞	+	╀		+	+	+			\downarrow	+	+	-		+	+	+	╞	$\left \right $	_	+	+	╞		_	+	+	╞	╞		4	+	+	╞		_	+	+	
G27 G28					\parallel																																													
G29																																																		
G30 G31																																																		
G31 G32																																																		
G41																																																		
G42 G43			+		\square	+	\square	+			+	-					_	-			\downarrow	+				_	_	_	╞					+		_	_		-	-			+	+	-			+	+	
G43 G44	++	+	+		$\left \right $	+	\mathbb{H}	+			╈	╞	+	╈	$\left \right $	+	╈	╞	\vdash		+	+	+	╞	$\left \right $	+	+	╈	┢	$\left \right $		+	+	╈	$\left \right $		╉	+	╈	╞		┥	+	+	+			+	╈	
G45							\square					t		t			t	t				1		L			1		t					t			1		t	t			İ	t				t	t	
G46 G47		\square	_		\square	+	\square	_			+	╞	_	╞		\downarrow	+	╞			\downarrow	\downarrow	+	-		4	+	_	╞			-	_	+		_	_	\downarrow	╞	╞		4	+	+	╞		_	+	╀	
G47 G48			+		\mathbb{H}	+	\mathbb{H}	+	+	H	+	╞	+	+	H	+	+	╞	┢		+	+	+	╞	$\left \right $	+	+	╈	╞	H	+	+	+	╀	$\left \right $	┥	+	+	╀	╞	$\left \right $	┥	+	+	+	\vdash	+	+	+	
G49												t		t			t							t					t					t						t			1	1				\pm		
G50	++		_		\square	\parallel	\square	_			+	╞	_	+		_	+	-			_					4	\downarrow	_	╞				_	+		_	_	\downarrow	-	╞		4	4	\downarrow	_		_	\downarrow	+	
G51 G52			+		$\left \right $	+	++	+		H	+	╞	╈	+	H	+	+	╞	\vdash		+		-			+	+	+	╞	H	╉		+	+	H	+	+	+	╀	╞	$\left \right $	+	+	+	╀	\vdash	+	+	+	
G61												L					t	t											t					t			1		t				1	t				t	t	
G62 G63								_			+	╞	4			\downarrow	\downarrow	+			_					4	\downarrow	+	╞	$\left \right $	+		+	╞		4	\downarrow	\downarrow	╞	╞			\downarrow	\downarrow	╞		_	\downarrow	╀	
G63		+	+		$\left \right $	+	\mathbb{H}	+		\square	╈	╞	+	╀	$\left \right $	+	╈	╞	\vdash		+	+	+	╞	$\left \right $	+	+	╈	┢	$\left \right $		+	+	╈	$\left \right $	┥	╉	+	╈	┢	$\left \right $	┥	+	+	+		+	+	╈	
G65												L		t			Ţ	t				1		L		1	1	T	L				Ţ	t			1	Ţ	t	L			1	Ţ				Ţ	Ţ	
G66 G67		++	_		\square	+	\square	_			+	╞	+	╞		_	+	╞			\downarrow	\downarrow	+	-		4	+	_	╞			-	+	+		_	_	+	+	╞		4	+	+	-		_	+	+	
G67 G68		+	+		\mathbb{H}	+	╂╂	+		\square	+	╞	+	╀	H	+	╀	╞	\vdash		+	+	+	╞	$\left \right $	+	+	╈	┢	$\left \right $		+	+	╈	$\left \right $	+	╉	+	╈	┢	$\left \right $	+	+	+	+		+	+	╋	
G69												t		t			t	t				1		L					t					t			1		t	t			1	t				t	t	
G70 G71							$\left \right $	_			_	╞	+	╞		_	+	+			\downarrow	\downarrow	+	-		4	+	_	╞				+	╞		4	+	+	╞			\downarrow	+	\downarrow	+		_	+	╀	
G71 G72		++	+		\mathbb{H}	+	\mathbb{H}	+	+	H	+	╞	+		H	+	+	┼	┢			╈	+	╞	$\left \right $	+	+	╈	┢	$\left \right $			+	╀	$\left \right $	┥	+	+	╀	┢	\square	┥	+	+	+	\vdash	+	+	+	
G81												L					t	t											L					t					t	L			1	Ţ					t	
G82 G83		++	_		\square			_			+	╞	+			_	+	-			\downarrow	\downarrow				4	+	_	╞				_	+		_	_	+	+	╞			+	+	-		_	+	+	
G83			+		\mathbb{H}	+	\mathbb{H}	+	+	H	+	╞	+	+	H	+	+	╞	┢		+	+	+	╞	$\left \right $	+	+	╈	╞	H	+	+	+	╀	$\left \right $	┥	+	+	╀	╞	$\left \right $	┥	+	+	+	\vdash	+	+	+	
G85							\square				T	L		t			t	t				Ţ		L					L										t	L			1	t				t	t	
G86		\square			\square	+	\square	_			_	╞	+	╞		_	+	╞			\downarrow	+	+	-		4	+	_	╞			-	+	+		_	_	+	╞	╞		\downarrow	+	+	+			+	╀	
G87 G88					\parallel		$\left \right $																						F										\parallel	F					+					
G89																																																Ţ		
G90 G91																																																		
G91 G92																																																		
G101																																																Ţ		
G102																																																		
G103 G104					\parallel																																													
G105																	t																																	
G106																																																		
G107 G108																																																		
G108					Ħ												╞																					+						+					f	
G110																																																		
G111 G112																																																		
G112																																																		

group_i can reach group_j

there is a working path

1 2	3 4	56	7																							1 0				
1																								1 2	2 3	4	5 6	7	8	9
2																														
D																														
2																														
2																														
3																														
5																														
.7																														
8																														
9																														
1																														
1																														
2																														
3																														
6																														
7																														
8 9																														
0																														
51																														
61					$\left(\right)$																									
52 - 53																														
64 65																														
66																														
8																														
69																														
70 71																														
2																														
2																														
33 34																														
35																														
36 37																														
8																														
39 90																														
91																														
01																														
02 03																														
04																														
.05																														
.07																														
08																														
10																														
11 12																														

p_j

group_i cannot reach group_j

there is an outage

1 2	34	56	7	89																						2 0	0	0	0	0	0 0	1 0 0 7 8	0	1	
		-()																														
3 4																																			
2																																			
1																																			
2 3 4																																			
5																																			
6 7																																			
8																																			
2																																			

Connectivity statistics (2021)

initial ~10% final

	1 2	345	678										4 4 2 3		4 4 5 6		4 4 8 9			56 21	6 6 2 3				6 (8 9			78 21			88 67		89 90			0	0 (_	1 1 0 0	0 0	0	1 1	1 1 1 1 1 2
	G2																																										
			++			\square	++		\square	+		+		\square	+	\square	+	+	_	++	+	+	+			+				+	+	\square	+		+	\vdash						+	
Ge Ge <th></th> <th></th> <th>++</th> <th>\square</th> <th>\vdash</th> <th>++</th> <th>++</th> <th>+</th> <th>++</th> <th>+</th> <th>\square</th> <th>+</th> <th></th> <th>\vdash</th> <th>+</th> <th>\mathbb{H}</th> <th>+</th> <th>+</th> <th>+</th> <th>++</th> <th>+</th> <th>+</th> <th>+</th> <th>+</th> <th>\vdash</th> <th>+</th> <th>\vdash</th> <th>+</th> <th>+</th> <th>+</th> <th>+</th> <th>\mathbb{H}</th> <th>+</th> <th></th> <th>+</th> <th>+</th> <th>\square</th> <th>+</th> <th></th> <th>+</th> <th>+</th> <th>+</th> <th>╂</th>			++	\square	\vdash	++	++	+	++	+	\square	+		\vdash	+	\mathbb{H}	+	+	+	++	+	+	+	+	\vdash	+	\vdash	+	+	+	+	\mathbb{H}	+		+	+	\square	+		+	+	+	╂
	G6																																										
									\square							\square																										_	
		++++				++	++		++	+		+		$\left \right $	+	\mathbb{H}	+	+	+	++	+	+	+			+		+		+	-	$\left \right $	+		+					+	+	+	
121 122 123 124 125 126 127 128 129		++++	++			++	++		++	+		+		$\left \right $	╈	\mathbb{H}	╈	+		++	+	+	+			+						$\left \right $	+		+					+		╈	
			++				╨		\square	+				\square	_	\square	_	$\left \right $			-		+										_									_	
			++				╈		++	+				\vdash	╈	\mathbb{H}	╋	+				+	+			+	\vdash			+	-	$\left \right $	+			$\left \right $				+	+	+	╂
			++	H					$^{++}$	+				$\left \right $	╈	[]	╈	+					+			+						$\left \right $	+							+		╈	
									П																																		
		++++	++			\square	++		\square	+		+		\square	+	\square	+	+	_	++	+	+	+			+			_	+	+	\square	+		+	\vdash		+				+	4
G2 G2 G3 G3 G3 G3 G3 G4 G4 <th></th> <th>++++</th> <th>++</th> <th></th> <th></th> <th>++</th> <th>++</th> <th></th> <th>+</th> <th>+</th> <th></th> <th>+</th> <th></th> <th>\vdash</th> <th>+</th> <th>\mathbb{H}</th> <th>+</th> <th>+</th> <th>+</th> <th>++</th> <th>+</th> <th>+</th> <th>+</th> <th></th> <th></th> <th>+</th> <th></th> <th>+</th> <th></th> <th>+</th> <th>+</th> <th>$\left \right$</th> <th>+</th> <th></th> <th>+</th> <th>$\left \right$</th> <th></th> <th></th> <th></th> <th>+</th> <th>+</th> <th>+</th> <th>╂</th>		++++	++			++	++		+	+		+		\vdash	+	\mathbb{H}	+	+	+	++	+	+	+			+		+		+	+	$\left \right $	+		+	$\left \right $				+	+	+	╂
G30 G31 G32 G32 G33 G34 G	G28																																										
G31 G32 G32 G33 G33 G34 G																																											
G32 G																$\left \right $																											
G41 G42 G43 G44 G44 G45 G45 G46 G46 G47 G46 G47 G47 G47 G48 G49 G																\square																											
G43 Image: Construction of the construct									\square							\square																											
G44 G45 G46 G47 G48 G49 G49 G41 G49 G41 G41 G42 G43 G44 G44 G45 G46 G47 G48 G49 G49 G41 G41 G42 G43 G44 G44 G45 G45 G46 G47 G47 G48 G49 G49 G41 G41 G42 G43 G44 G45 G45 G45 G46 G47 G48 G49 G49 G41 G41 G42 G43 G44 G44 G45 G45 G46 G47 G48 G49 G49 G41 G41 G41 G42 G43 G44 G44 G45 G45 G46 G46 G47 G48 G48 G49 G49 G41 G41 G42 G43 G44 G44 G45 G45 <th></th>																																											
G45 G46 G47 G46 G48 G49 G49 G49 G49 G50 G51 G52 G51 G52 G53 G52 G53 G54 G53 G54 G55 G54 G55 G56 G55 G56 G57 G56 G57 G58 G57 G59 G50 G58 G59 G50 G59 G50 G50 G50 G50 G50 G51 G50 G50 G52 G50 G50 G53 G50 G50 G54 G50 G50 G55 G50 G50 G56 G50 G50 G57 G50 G50 G58 G50 G50 G59 G50 G50 G50 G50 G50 G51 G50 G50 G52 G50 G50 G53 G50 G		++++	++		\square	++	++	+	++	+	\square	+			+	\mathbb{H}	+	+	+	++	+	+	+	+	\vdash	+	\vdash	+	+	+	+	\mathbb{H}	+	\square	+	\vdash	\square	+		+	+	+	┼
G47 G48 G49 G49 G50 G51 G52 G63 G64 G65 G62 G63 G64 G70 G71 G72 G73 G74 G75 G76 G77 G78 G79 G70 G71 G72 G73 G74 G75 G76 G77 G78 G79 G70 G71 G72 G73 G74 G75 G76 G77 G78 G79 G70 G71 G72 G73 G74 G75 G76 G77 G78 G79 G	G45		\pm							+																																	
G48 G49 G49 G50 G51 G52 G52 G63 G64 G65 G65 G66 G67 G68 G70 G69 G71 G70 G71 G72 G73 G74 G75 G76 G77 G78 G79 G70 G71 G72 G73 G74 G75 G76 G77 G78 G79 G70 G71 G72 G73 G74 G75 G76 G77 G78 G79 G70 G71 G72 G73 G74 G75 G76 G77 G78 G79 G79 G70 G71 G72 G73 G74 G75 G76 G77 G78 G79 G79 G70 G71 G72 G73 G74 G75 G75 G76 G77 G78 G79 G79 G70 G71 G																																											
G49 G50 G51 G52 G53 G64 G65 G70 G70 G71 G71 G72 G73 G74 G74 G75 G76 G77 G78 G79 G70 G71 G72 G73 G74 G75 G76 G77 G78 G79 G70 G71 G72 G73 G74 G75 G76 G77 G78 G79 G70 G71 G72 G73 G74 G75 G76 G77 G78 G79 G70 G71 G72 G73 G74 G75 G76 G77 G78 G79 G79 G70 G70 G71 G72 G73 G74 G75 G75 G76 G77 G78 G79 G79 G70 G71 G72 G73 G		$\left \right \left \right $	++			$\left \right $	++		++	+		$\left \right $		$\left \right $	_		+	+	_	++	+	+	+			+						$\left \right $	+		_							+	
G50 G51 G52 G63 G64 G65 G65 G66 G67 G68 G69 G70 G71 G72 G73 G74 G74 G75 G75 G76 G77 G77 G78 G79 G71 G72 G73 G74 G75 G75 G76 G77 G78 G79 G71 G72 G73 G74 G75 G75 G76 G77 G78 G79 G70 G71 G72 G73 G74 G75 G75 G76 G77 G77 G78 G79 G70 G71 G72 G73 G74 G75 G75 G76 G77 G78 G79 G70 G71 G72 G73 G74 G75 G75 G76 G77 G78 G79 G79 G70 G71 G72 G73		++++	++	\square	\vdash	++	++	+	++	+		+		\vdash	+	$\left \right $		+	+	++	+	+	+	+	\vdash	+	\vdash	+	+	+	+	\mathbb{H}	+	\square	+	\vdash	\square	+		+	+	+	╂
G52 G61 G62 G63 G64 G64 G65 G66 G71 G71 G72 G73 G74 G74 G75 G76 G77 G78 G79 G70 G71 G71 G72 G73 G74 G75 G76 G77 G78 G79 G70 G71 G72 G73 G74 G75 G77 G77 G78 G79 G79 G70 G71 G71 G72 G73 G74 G75 G76 G77 G78 G79 G79 G70 G71 G72 G73 G74 G75 G75 G76 G77 G78 G79 G79 G70 G71 G72 G73 G74 G75 G75 G76 G77 G78 G79 G79 G70 G71 G71 G72 G73 G74 G75 G75 <td>G50</td> <td></td>	G50																																										
G61 G81 <td></td> <td></td> <td>\square</td> <td></td>			\square																																								
G62 G63 G64 G64 G65 G64 G66 G66 G76 G70 G71 G71 G72 G72 G73 G74 G74 G74 G75 G74 G76 G74 G77 G74 G78 G74 G79 G74 G71 G74 G72 G74 G73 G74 G74 G74 G75 G74 G76 G74 G77 G74 G77 G74 G77 G74 G77 G74 G77 G74 G78 G74 G79 G74 G70 G74 G71 G74 G72 G74 G74 G74 G75 G74 G76 G74 G77 G74 G78 G74 G79 G74 G70 G74 G71 G74 G72 G74 G74 G74 G75 G74 G76 G74 G77 G74 G78 G74 G79 G74 G74 G74 G75 G74 G76 G74 G77 G74 G78 G74 G79 G74 G74 G74 G75 G74 G76 G74 G77 G			++				╂┤		++	+				$\left \right $	+	\mathbb{H}	+	+			+	+	+		\square	+				+	+	$\left \right $	+		+	\square		+		+	+	+	+-
G63 G64 G65 G66 G67 G68 G69 G70 G71 G72 G81 G81 <td></td> <td></td> <td>++</td> <td></td> <td>$\left \right$</td> <td></td> <td>╈</td> <td></td> <td>++</td> <td>+</td> <td></td> <td></td> <td></td> <td>$\left \right$</td> <td>╈</td> <td>\mathbb{H}</td> <td>╈</td> <td>+</td> <td></td> <td></td> <td></td> <td>+</td> <td>+</td> <td></td> <td></td> <td>+</td> <td>\square</td> <td></td> <td></td> <td></td> <td></td> <td>$\left \right$</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td>╈</td> <td></td>			++		$\left \right $		╈		++	+				$\left \right $	╈	\mathbb{H}	╈	+				+	+			+	\square					$\left \right $	+							+		╈	
G66 G67 G68 G69 G69 G70 G71 G72 G81 G82 G83 G84 G84 G85 G86 G87 G88 G88 G89 G80 G80 G80 G80 G81 G82 G83	G63								Ш																																		
G66 G67 G68 G69 G70 G71 G72 G81 G82 G83		\square	++			\square	\square		\square	+		\square		\square	_	\square	4	\parallel	_	++	+										_	\square	+		_							4	4
G67 G68 G68 G69 G70 G71 G72 G81 G81 G82 G83 G83		++++	++			++	++		++	+		+		$\left \right $	+	\mathbb{H}	+	+	+	++	+	+				+		+	+	+	+	$\left \right $	+		+					+		+	
G69 G70 G71 G72 G73 G74 G74 G75 G76 G77 G78 G81 G81 G81 G81 G81 G81 G81 G81 G81 G81 G81 G81 G81 G81 G81 G81 G81 G81 G81 G81 G81			++	H		++	$^{++}$		$^{++}$	+		\top		$\left \right $	╈	[]	╈	+		++	+					+						$\left \right $	+		╈					+		╈	
G70 G71 G72 G73 G74 G74 G74 G74 G74 G74 G74 G74 G74 G74 G74 G74 G74 G74 G74 G74 G74 G75 G75 G76 G76							\square		\square							\square																											
G71 G72 G72 G81 G82 G83		$\left \right \left \right $	++	\square		++	++	+	++	+		+		\vdash	+	H	+	+	+	++	+	+	+		\square				+	+	+	$\left \right $	+		+	\vdash		+		+	+	+	+
G72 I			++		\square	++	++		++	+		+		\vdash	+	\mathbb{H}	+	+	+	++	+	+	+	+	\square		\vdash			+	+	\mathbb{H}	+			\vdash		+		+	+	+	
G82 G83 G83 G83 G84 G	G72																																										
																$\left \right $																											
	G84																																										
G86 G																$\left \right $																											
																\square																											
	G89																Ì																										
G91 G92 G										+						H																											
	G101																																										
G102 G102 G102 G102 G102 G102 G102 G102	G102																																										
G104 G105 G105 G105 G105 G105 G105 G105 G105																$\left \right $																											+
G106	G106									+						\square																											
G107	G107																																										
																$\left \right $																											
G111	G111									+						\square																											j

Connectivity statistics (2021)

initial ~10%

final ~98%

highest since 2016! 🙂

1	123	345	56	78		1 1			22		33 01	-	4	44 23	4	4 5	4 4	4 4 7 8	4	5 0	5 5 1 2	56 21	6 2	-	6 6 4 5		6 8	6 7 9 0	7 7 D 1	7		88		8 5	8 8		8 9		9 9 1 2		1 0 2	Ŭ	1 1 0 0 4 5		- U		0 1	1 1 1 1 0 1	1
G1																																								-	-								-
G2																																																	
G3 G4								+				$\left \right $																																					
G4 G5				+				+				$\left \right $			\vdash					\vdash			+	\square			$\left \right $				\vdash			$\left \right $							$\left \right $								
G6												\square			\square			i		\square				\square										$\left \right $															
G7																																																	
G8								$\left \right $																																									
G9 G10				+				+				$\left \cdot \right $			$\left \right $					\vdash			$\left \right $	\square			$\left \right $				$\left \right $			$\left \right $							$\left \right $					\vdash			
G11								+				$\left \cdot \right $			$\left \right $								\vdash	\square			$\left \right $				$\left \right $			$\left \right $							$\left \right $								
G12													1																																				
G21																																																	
G22 G23								+				$\left \right $															$\left \right $							$\left \right $												-+			
G23								+				$\left \right $			$\left \right $					\vdash			+				$\left \right $							$\left \right $							$\left \right $								
G25												$\left \right $			\square					\square														$\left \right $															
G26																																																	
G27																																																	
G28 G29																																																	
G30																																																	
G31																																																	
G32																																																	
G41 G42																																																	
G42								+				$\left \right $			$\left \right $												$\left \right $							$\left \right $							$\left \right $								
G44								\uparrow				\square											\square	\square							\square																		
G45																																																	
G46																																																	
G47 G48	++	++	++		+	┼┼	\square	+		+	+		+	+						\square				\square			$\left \right $					+	+	\square	+	+	+	\square	+				+	+					
G49								+				$\left \cdot \right $			$\left \right $					\square			$\left \right $				$\left \right $							$\left \right $															
G50																																																	
G51																																																	
G52 G61								+				$\left \right $			$\left \right $			╞		$\left \right $				\square			$\left \right $				\square			$\left \right $							$\left \right $					\square			
G62								+				$\left \cdot \right $			$\left \right $					\square			$\left \right $				$\left \right $							$\left \right $							$\left \right $								
G63																																																	
G64																																																	
G65 G66								$\left \right $				$\left \right $																																					
G66 G67								+				$\left \cdot \right $			$\left \right $					$\left \right $			$\left \right $				$\left \right $							$\left \right $							$\left \right $								
G68												$\left \cdot \right $			\square					\square							$\left \right $							$\left \right $															
G69																																																	
G70																																																	
G71 G72								+				$\left \right $			$\left \right $								+				$\left \right $							$\left \right $							$\left \right $					$ \vdash $			
G81								+				\square			$\left \right $									\square			$\left \right $				\vdash			$\left \right $							$\left \right $								
G82																																																	
G83																																																	
G84 G85				+				+				$\left \right $			\vdash					\square			$\left \right $	\square			$\left \right $				$\left \right $			$\left \right $							$\left \right $					\vdash			
G86				+				+				H			$\left \right $					\square				\vdash			$\left \right $				\vdash			$\left \right $							$\left \right $								
G87																																																	
G88																																																	
G89																																																	
G90 G91												$\left \right $																																					
G92																																																	
G101																																																	
G102																																																	
G103 G104																																																	
G104 G105																																																	
G106																																																	
G107																																																	
G108																																																	
G109 G110																																																	
G110 G111																																																	
G112																																																	

nsg-ethz/mini_internet_project

network operators

$\begin{array}{l} \text{high-level} \\ \text{specification} \end{array} \varphi$

distributed algorithms

per-device ${\cal F}$ forwarding paths

Verification

Synthesis

Reconfiguration

Given specification φ and

Verification

Synthesis

Reconfiguration

Given specification φ and

Verification

Synthesis

Reconfiguration

configuration ${\cal C}$

Given specification φ and

Verification

Synthesis

Reconfiguration

configuration \mathcal{C}

Given specification φ and

Verification

Synthesis

Reconfiguration

configuration \mathcal{C}

Given specification φ and

Verification

Synthesis

 \bigotimes

Reconfiguration

configuration ${\cal C}$

configuration ${\cal C}$ Verification

Synthesis

Reconfiguration

initial and final configuration \mathcal{C}_i \mathcal{C}_f

Given specification φ and

The three tales of (correct) network operations

Coht bront 4 4 100

- 1 Verification going forward
- 2 Synthesis going backward
- 3 Reconfiguration going sideways

The three tales of (correct) network operations

Coht bront 4 7 700

Verification going forward

> Synthesis going backward

Reconfiguration going sideways

Probabilistic Verification of Network Configurations

Samuel Steffen

Timon Gehr

Petar Tsankov Laurent Vanbever Martin Vechev

Networked Systems

Service Level Agreements (SLA) *"99.99% reachability"*

Traffic Engineering "80% load-balanced"

Partial exploration

1 107 359

#scenarios for *four 9s*, 191 links, p_{link failure} = 0.001

Too expensive

Partial exploration

1 107 359

#scenarios for *four 9s*, 191 links, $p_{link failure} = 0.001$

Partial exploration

1 107 359

#scenarios for *four 9s*, 191 links, p_{link failure} = 0.001

Estimation via sampling

738 M

Hoeffding, $\alpha = 0.95$

Too expensive

Partial exploration

1 107 359

#scenarios for *four 9s*, 191 links, $p_{link failure} = 0.001$

Estimation via sampling

738 M

Hoeffding, $\alpha = 0.95$

Too expensive

Partial exploration

1 107 359

#scenarios for *four 9s*, 191 links, p_{link failure} = 0.001

Overview

Pruning Failures

Key Idea

shortest paths

Key Idea

shortest paths

☆ for BGP

Algorithm 3 Hot edges for BGP

- 1: **procedure** HotBGP $(u, d, E_{\text{fwd}}, L)$
- $X \leftarrow$ nodes in the same partition as *u* under *L* 2:
- $BR_L \leftarrow TOP3(BR, X)$ 3:
- $\operatorname{Rr}_L \leftarrow \operatorname{Rr} \cap X$ 4:
- $\mathcal{H} \leftarrow \text{AllSp}(\text{Rr}_L, \text{Br}_L, L)$ 5:
- $\mathcal{D} \leftarrow \{u\}$ 6:

8:

- $\cup \{ y \mid (x, y) \in \text{Static}_d \cap E_{\text{fwd}} \}$ 7:
 - $\cup \{ y \mid (x, y) \in E_{\text{fwd}} \land \text{NH}_d(x) \neq \text{NH}_d(y) \}$
- **for** each $x \in \mathcal{D}$ **do** 9:
- 10:
- $\mathcal{H} \leftarrow \mathcal{H} \cup (\text{Static}_d \cap E_{\text{fwd}})$ 11:
- **if** $RR_L = \emptyset$ **then** 12:
- $\mathcal{H} \leftarrow \mathcal{H} \cup \operatorname{AllSp}(\{u\}, \operatorname{Br}_L)$ 13:
- 14: return \mathcal{H}

see paper

▶ BGP pre-processing (§4.2)

```
▶ all shortest paths (Alg. 2)
decision points
```

 $\mathcal{H} \leftarrow \mathcal{H} \cup SP_L(x, NH_d(x))$ \triangleright shortest path $x \rightarrow NH_d(x)$ ▶ traversed static routes

ensure connectivity

☆ for BGP

Algorithm 3 Hot edges for BGP

- 1: **procedure** HotBGP $(u, d, E_{\text{fwd}}, L)$
- $X \leftarrow$ nodes in the same partition as *u* under *L* 2:
- $BR_L \leftarrow TOP3(BR, X)$ 3:
- $\operatorname{Rr}_L \leftarrow \operatorname{Rr} \cap X$ 4:
- 5: $\mathcal{H} \leftarrow \text{AllSp}(\text{Rr}_L, \text{Br}_L, L)$
- $\mathcal{D} \leftarrow \{u\}$ 6:

8:

- $\cup \{y \mid (x, y) \in \text{Static}_d \cap E_{\text{fwd}}\}$ 7:
 - $\cup \{ y \mid (x, y) \in E_{\text{fwd}} \land \text{NH}_d(x) \neq \text{NH}_d(y) \}$
- **for** each $x \in \mathcal{D}$ **do** 9:
- 10:
- 11: $\mathcal{H} \leftarrow \mathcal{H} \cup (\text{STATIC}_d \cap E_{\text{fwd}})$
- **if** $RR_L = \emptyset$ **then** 12:
- $\mathcal{H} \leftarrow \mathcal{H} \cup \operatorname{AllSp}(\{u\}, \operatorname{Br}_L)$ 13:
- 14: return \mathcal{H}

see paper

▶ BGP pre-processing (§4.2)

```
▶ all shortest paths (Alg. 2)
 decision points
```

 $\mathcal{H} \leftarrow \mathcal{H} \cup SP_L(x, NH_d(x))$ \triangleright shortest path $x \rightarrow NH_d(x)$ ▶ traversed static routes

▶ ensure connectivity

network partitions

route reflection

dependence on IGP costs

券 for BGP

Algorithm 3 Hot edges for BGP

- 1: **procedure** HotBgp $(u, d, E_{\text{fwd}}, L)$
- 2: $X \leftarrow$ nodes in the same partition as u under L
- 3: $BR_L \leftarrow TOP3(BR, X)$
- 4: $\operatorname{Rr}_L \leftarrow \operatorname{Rr} \cap X$
- 5: $\mathcal{H} \leftarrow \text{AllSp}(\text{Rr}_L, \text{Br}_L, L)$
- 6: $\mathcal{D} \leftarrow \{u\}$

8:

- 7: $\cup \{y \mid (x, y) \in \text{STATIC}_d \cap E_{\text{fwd}}\}$
 - $\cup \{ y \mid (x, y) \in E_{\text{fwd}} \land \text{NH}_d(x) \neq \text{NH}_d(y) \}$
- 9: **for** each $x \in \mathcal{D}$ **do**
- 10: $\mathcal{H} \leftarrow \mathcal{H} \cup \operatorname{Sp}_L(x, \operatorname{NH}_d(x))$
- 11: $\mathcal{H} \leftarrow \mathcal{H} \cup (\text{STATIC}_d \cap E_{\text{fwd}})$
- 12: **if** $RR_L = \emptyset$ **then**
- 13: $\mathcal{H} \leftarrow \mathcal{H} \cup \text{AllSp}(\{u\}, \text{Br}_L)$
- 14: return \mathcal{H}

see paper

network partitions

route reflection

dependence on IGP costs

with correctness proof

Single-flow (e.g. Reachability)

Few minutes for *100s* of links for *four 9*s

For 80% of scenarios, > 50% of links are 🗱

Single-flow (e.g. Reachability)

Few minutes for *100s* of links for *four 9*s

For 80% of scenarios, > 50% of links are 🗱

Multi-flow (e.g. Isolation)

Performance degrades gracefully

Single-flow (e.g. Reachability)

Few minutes for *100s* of links for *four 9s*

For 80% of scenarios, > 50% of links are 🗱

Multi-flow (e.g. Isolation)

Performance degrades gracefully

Also analyzed real ISP config

Single-flow (e.g. Reachability)

Few minutes for 1

For 80% of scenarios

Multi-flow (e.g. Isolation)

Performance degrades gracefully

Also analyzed real ISP config

The three tales of (correct) network operations

Coht runt i don

Verification going forward

2 Synthesis going backward Reconfiguration going sideways

NetComplete: Practical Network-Wide Configuration Synthesis with Autocompletion

Ahmed El-Hassany

Petar Tsankov

USENIX Symposium on Networked Systems Design and Implementation. April 2018.

Martin Vechev

Laurent Vanbever

NetComplete takes as inputs configuration sketches together with a set of high-level requirements

NetComplete takes as inputs configuration sketches together with a set of high-level requirements

A configuration with "holes"

interface TenGigabitEthernet1/1/1 ip address ? ? ip ospf cost 10 < ? < 100</pre>

router ospf 100

router bgp 6500

• • • neighbor AS200 import route-map imp-p1 neighbor AS200 export route-map exp-p1 • • • ip community-list C1 permit ? ip community-list C2 permit ?

route-map imp-p1 permit 10 ? route-map exp-p1 ? 10 match community C2 route-map exp-p1 ? 20 match community C1 • • •

NetComplete "autocompletes" the holes such that the output configuration complies with the requirements

interface TenGigabitEthernet1/1/1 ip address ? ? ip ospf cost 10 < ? < 100</pre>

router ospf 100

router bgp 6500

• • • neighbor AS200 import route-map imp-p1 neighbor AS200 export route-map exp-p1 • • • ip community-list C1 permit ? ip community-list C2 permit ?

route-map imp-p1 permit 10 ? route-map exp-p1 ? 10 match community C2 route-map exp-p1 ? 20 match community C1 • • •

interface TenGigabitEthernet1/1/1 ip address 10.0.0.1 255.255.255.254 ip ospf cost 15

router ospf 100 network 10.0.0.1 0.0.0.1 area 0.0.0.0

router bgp 6500

• • • neighbor AS200 import route-map imp-p1 neighbor AS200 export route-map exp-p1 • • •

ip community-list C1 permit 6500:1

ip community-list C2 permit 6500:2

route-map imp-p1 permit 10 set community 6500:1 set local-pref 50 route-map exp-p1 permit 10 match community C2 route-map exp-p1 deny 20 match community C1

• • •

NetComplete reduces the autocompletion problem to a constraint satisfaction problem

First Encode the high-leve

- Encode the high-level requirements as a logical formula (in SMT)partial configurations
- protocol semantics

Encode the First

Then

- protocol semantics
- high-level requirements as a logical formula (in SMT) partial configurations

Use a solver (Z3) to find an assignment for the undefined configuration variables s.t. the formula evaluates to True

Main challenge: Scalability

Insight #1

network-specific heuristics

search space navigation

Insight #2

partial evaluation

search space reduction

Consider this initial configuration in which (A,C) traffic is forwarded along the direct link

For performance reasons, the operators want to enable load-balancing

What should be the weights for this to happen?

synthesis procedure

synthesis procedure

$\forall X \in Paths(A,C) \setminus Reqs$

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

synthesis procedure

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

Solve

synthesis procedure

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

Synthesized weights

synthesis procedure

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

This was easy, but... it does not scale

$\forall X \in Paths(A,C) \setminus Reqs$

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

There can be an exponential number of paths between A and C...

 $\forall X \in Paths(A,C) \setminus Reqs$

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

To scale, NetComplete leverages Counter-Example Guided Inductive Synthesis (CEGIS)

To scale, NetComplete leverages **Counter-Example Guided Inductive Synthesis (CEGIS)**

An contemporary approach to synthesis where a solution is iteratively learned from counter-examples

While enumerating all paths is hard, computing shortest paths given weights is easy!

Instead of considering all paths between X and Y

Instead of considering all paths between X and Y

CEGIS Part 1 Consider a random subset **S** of them and synthesize the weights considering **S** only

CEGIS Part 1

intuition

Instead of considering all paths between X and Y

Consider a random subset **S** of them and synthesize the weights considering *S* only

Fast as *S* is small compared to all paths

Instead of considering all paths between X and Y

CEGIS Part 1

intuition

- Consider a random subset 5 of them and synthesize the weights considering *S* only
- **Fast** as *S* is small compared to all paths **but** synthesized weights can be wrong

Consider a random subset 5 of them and CEGIS synthesize the weights considering *S* only Part 1

CEGIS Part 2 Check whether the weights found comply with the requirements over all paths

If so return Else take a counter-example (a path) that violates the Reqs and add it to S

Repeat.

Instead of considering all paths between X and Y

Consider a random subset 5 of them and CEGIS synthesize the weights considering *S* only Part 1

CEGIS Part 2 **Check** whether the weights found comply with the requirements **over all paths**

intuition

Fast too simple shortest-path computation

Instead of considering all paths between X and Y

synthesis procedure

synthesis procedure

$\forall X \in SamplePaths(A,C) \setminus Reqs$

synthesis procedure

∀X ∈ SamplePaths(A,C)\Reqs Sample: { [A,B,D,C] }

synthesis procedure

$\forall X \in SamplePaths(A,C) \setminus Reqs$

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

synthesis procedure

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

synthesis procedure

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

Synthesized weights

synthesis procedure

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

The synthesized weights are incorrect: $cost(A \rightarrow B \rightarrow C]) = 250 < cost(A \rightarrow C) = 300$

$\forall X \in SamplePaths(A,C) \setminus Reqs$

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

We simply add the counter example to SamplePaths and repeat the procedure

$\forall X \in SamplePaths(A,C) \setminus Reqs$ \downarrow Sample: { [A,B,D,C] } U { [A,B,C] }

The entire procedure usually converges in few iterations making it very fast in practice

Network size

OSPF synthesis Large time (sec) ~150 nodes

settings

16 reqs, 50% symbolic, 5 repet. CEGIS enabled

Reqs. type	Synthesis time
Simple	14s
ECMP	13s
Ordered	249s

The three tales of (correct) network operations

Verification going forward

Synthesis going backward

3 Reconfiguration going sideways

ETHzürich

Snowcap: Synthesizing Network-Wide Configuration Updates

Tibor Schneider

Networked Systems

ETH Zürich — seit 2015

- Rüdiger Birkner Laurent Vanbever
- SIGCOMM'21, August 24, 2021

Snowcap performs network reconfigurations automatically and safely

Live Network

It's all about navigating the search space of possible reconfiguration orderings

The search space is both

• sparse; and • huge.

The exploration algorithm is based on DFS traversal

Sequences with a known, bad prefix are not explored

Greedy minimization of the cost function

 $\mathbf{0}$

Greedy minimization of the cost function

DFS Exploration works well in *most* cases

• • •

• • •

• • •

• • •

Actively find the problem!

Snowcap uses counter-example-guided search to resolve difficult dependencies

DFS Exploration Counter-exampleguided search

Snowcap . . .

- performs normal exploration until a dead end
- follows a **divide-and-conquer** approach

We evaluate Snowcap on a wide range of topologies and migration scenarios

- \approx 80 Topologies from Topology Zoo Common migration scenarios Random link weights and iBGP topologies.

Snowcap finds solutions within seconds

 $\geq 50\%$ chanc

Random orde Best practice Snowcap

Migration from iBGP full-mesh to route-reflection.

ce to violate reach	ability	time
er e order	70% 25%	
	0%	at most $12s^*$

*for 3081 commands on 82 routers.

Snowcap's runtime scales very well with increasing complexity

The three tales of (correct) network operations

Verification going forward

Synthesis going backward

Reconfiguration

going sideways

Complexity

Simplicity

Learnability

Complexity

Simplicity

Learnability

What's the computational complexity of configuration verification and synthesis?

Yes. SMT solving works, but is it *really* needed?

Complexity

Simplicity

Learnability

What's the *simplest* computation that can do it all? and hopefully is easier to verify / synthesize for?

Complexity

Simplicity

Learnability

Can we *learn* how to invert network computations? instead of writing inverse models by hands

The three tales of (correct) network operations

Laurent Vanbever nsg.ee.ethz.ch

CoNEXT Wed Dec 8 2021