
CoNEXT

Laurent Vanbever

Wed Dec 8 2021

nsg.ee.ethz.ch

The three tales of (correct) network operations

Date 29 April 2011 9:49pm

From sigcomm11-pc-chairs@acm.org

Date 29 April 2011 9:49pm

From sigcomm11-pc-chairs@acm.org

Subject Accepted paper #41 "Seamless Network-Wide IGP Migrations"

Date

Dear Laurent Vanbever,

The ACM SIGCOMM 2011 Conference program committee is delighted to

inform you that your paper #41 has been accepted to appear in

the technical program in Toronto.

[…]

Body

29 April 2011 9:49pm

My first SIGCOMM paper (2011)

How do you reconfigure a network

without loosing reachability?

A B

C D

initial forwarding state

A B

C D

initial forwarding state final forwarding state

A B

C D

A B

C D

final forwarding stateinitial forwarding state

A B

C D

How do you reconfigure a network

without loosing reachability?

A B

C D

final forwarding stateinitial forwarding state
intermediate

forwarding state

A B

C D

A B

C D

A B

C D

final forwarding stateinitial forwarding state
intermediate

forwarding state

A B

C D

A B

C D

A B

C D

final forwarding stateinitial forwarding state
intermediate

forwarding state

What if we reconfigure D first?

A B

C D

A B

C D

A B

C D

final forwarding stateinitial forwarding state
intermediate

forwarding state

A B

C D

What if we reconfigure D first?

A B

C D

A B

C D

final forwarding stateinitial forwarding state
intermediate

forwarding state

We create a forwarding loop

A B

C D

What if we reconfigure D first?

A B

C D

A B

C D

final forwarding stateinitial forwarding state
intermediate

forwarding state

A B

C D

A B

C D

A B

C D

final forwarding stateinitial forwarding state
intermediate

forwarding state

What if we reconfigure C first?

A B

C D

A B

C D

A B

C D

final forwarding stateinitial forwarding state
intermediate

forwarding state

Works!

What if we reconfigure C first?

A B

C D

A B

C D

A B

C D

final forwarding stateinitial forwarding state
intermediate

forwarding state

A B

C D

A B

C D

A B

C D

final forwarding stateinitial forwarding state
intermediate

forwarding state

A B

C D

A B

C D

A B

C D

final forwarding stateinitial forwarding state
intermediate

forwarding state

A B

C D

This was easy to compute

for one destination, but…

what if you have many?

How do you reconfigure a network

without loosing reachability?

This was easy to compute

for one destination, but…

what if you have many?
what if you have many?

How do you reconfigure a network

without loosing reachability?

Finding an ordering preserving reachability is hard

Prove that finding an ordering is NP-complete

which applies the updates to a live network

Design practical algorithms and heuristics

Implement an orchestration system

by reducing from the 3-SAT problem

based on necessary/sufficient conditions

Contributions

My first SIGCOMM paper (2011)

Our last SIGCOMM paper (2021)

Have we just come

 full circle?

vs

SIGCOMM 2011 SIGCOMM 2021

vs

more…

general

expressive

efficient

vs

more…

general

expressive

efficient

reason about

distributed network computations

reason about

distributed network computations

Distributed computations rule over

network forwarding behavior

distributed

algorithms

distributed

algorithms
per-device

forwarding state

outputs

distributed

algorithms
topology

external routes

per-device

configurations

per-device

forwarding state

outputsinputs

distributed

algorithms
per-device

forwarding state
topology

external routes

per-device

configurations

network

 operators

outputsinputs

topology

external routes

per-device

configurations

distributed

algorithms

network

 operators

per-device

forwarding state

high-level

specification

outputsinputs

topology

external routes

distributed

algorithms

network

 operators
high-level

specification

per-device

forwarding state

per-device

configurations

outputsinputs

topology

external routes

distributed

algorithms

network

 operators
high-level

specification

per-device

forwarding state

per-device

configurations

outputsinputs

Need more proof?

Ask our students! Pre-COVID Mini-Internet hackathon @ETH Zürich

Connectivity statistics (2021)

groupi can reach groupj

there is a working path

groupi cannot reach groupj

there is an outage

initial

final

~10%

Connectivity statistics (2021)

initial

final

~10%

~98%

highest since 2016!

Connectivity statistics (2021)

nsg-ethz/mini_internet_project

topology

external routes

distributed

algorithms

network

 operators
high-level

specification

per-device

forwarding paths

per-device

configurations

We've aimed at helping operators bridging this gap

considering three directions

Verification

Synthesis

Reconfiguration

We've aimed at helping operators bridging this gap

considering three directions

Given specification

Verification

Synthesis

Reconfiguration

and

We've aimed at helping operators bridging this gap

considering three directions

configuration

Given specification

and

Verification

Synthesis

Reconfiguration

We've aimed at helping operators bridging this gap

considering three directions

configuration

Given specification

and

Return

Verification

Synthesis

Reconfiguration

We've aimed at helping operators bridging this gap

considering three directions

configuration

Given specification

and

Return

✓

𐄂
Verification

Synthesis

Reconfiguration

We've aimed at helping operators bridging this gap

considering three directions

configuration

Given specification

and

Return

✓

𐄂
Verification

Synthesis

Reconfiguration

We've aimed at helping operators bridging this gap

considering three directions

configuration

Given specification

and

Return

✓

𐄂

initial and final configuration

Verification

Synthesis

Reconfiguration

We've aimed at helping operators bridging this gap

considering three directions

Verification

The three tales of (correct) network operations

Synthesis

Reconfiguration

going forward

going sideways

going backward

1

2

3

Verification

The three tales of (correct) network operations

Synthesis

Reconfiguration

going forward

going sideways

going backward

1

Probabilistic Verification
of Network Configurations

Samuel

Steffen

Timon

Gehr

Laurent

Vanbever

Petar

Tsankov

Martin

Vechev

Probabilistic Verification

What is the probability of ?

probabilistic

Probabilistic Verification

What is the probability of ?

Service Level Agreements (SLA)
“99.99% reachability”

probabilistic

Traffic Engineering
“80% load-balanced”

Probabilistic Verification

What is the probability of ?

Service Level Agreements (SLA)
“99.99% reachability”

probabilistic

Traffic Engineering
“80% load-balanced”

“soft” properties

high precision
required

Attempts: Exploring Failures

Partial exploration

Attempts: Exploring Failures

Partial exploration

#scenarios for four 9s,
191 links, plink failure = 0.001

1 107 359

Attempts: Exploring Failures

Partial exploration

#scenarios for four 9s,
191 links, plink failure = 0.001

1 107 359

Too expensive

Attempts: Exploring Failures

Partial exploration Estimation via
sampling

#scenarios for four 9s,
191 links, plink failure = 0.001

1 107 359 738 M

Hoeffding, α = 0.95

Attempts: Exploring Failures

Partial exploration Estimation via
sampling

#scenarios for four 9s,
191 links, plink failure = 0.001

1 107 359 738 M

Hoeffding, α = 0.95

Too expensive

Attempts: Exploring Failures

Partial exploration Estimation via
sampling

#scenarios for four 9s,
191 links, plink failure = 0.001

1 107 359 738 M

Hoeffding, α = 0.95

1 854

Too expensive

≈600x reduction

Overview

BGP + IGP support

High accuracy

Scalable

Pruning Failures

Key Idea

2

A

B
shortest paths

Key Idea

2

A

B
shortest paths

Key Idea

2

A

B
shortest paths

Key Idea

2

A

B
shortest paths

Key Idea

2

A

B
shortest paths

Key Idea

2

A

B
shortest paths

Key Idea

2

A

B

cold edges

shortest paths

Key Idea

2

A

B

cold edges

Scenarios with same forwarding graph (32 total):

…

shortest paths

Key Idea

2

A

B

cold edges

Scenarios with same forwarding graph (32 total):

…

shortest paths
How to find these?

for BGP

see paper

for BGP

see paper

network partitions

route reflection

dependence on
IGP costs

for BGP

see paper

network partitions

route reflection

dependence on
IGP costs

with correctness proof

Failure Exploration

Sum up P()

Failure Exploration

Sum up P()

“Cut off” unlikely scenarios

Failure Exploration

Sum up P()

“Cut off” unlikely scenarios

Very efficient in practice

Efficiency depends on #

Implementation

Reachability Path length

Waypointing

Isolationnsg-ethz/netdice

Egress

Load balancing

Congestion …

Few minutes for 100s of links for four 9s

For 80% of scenarios, > 50% of links are

Single-flow (e.g. Reachability)

Runtime

Few minutes for 100s of links for four 9s

For 80% of scenarios, > 50% of links are

Performance degrades gracefully

Single-flow (e.g. Reachability)

Multi-flow (e.g. Isolation)

Runtime

Few minutes for 100s of links for four 9s

Also analyzed
real ISP config

For 80% of scenarios, > 50% of links are

Performance degrades gracefully

Single-flow (e.g. Reachability)

Multi-flow (e.g. Isolation)

Runtime

Few minutes for 100s of links for four 9s

Also analyzed
real ISP config

For 80% of scenarios, > 50% of links are

Performance degrades gracefully

Single-flow (e.g. Reachability)

Multi-flow (e.g. Isolation)

Runtime

NetDice is

precise and efficient

Verification

The three tales of (correct) network operations

Synthesis

Reconfiguration

going forward

going sideways

going backward

2

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

Ahmed El-Hassany Petar Tsankov Martin Vechev Laurent Vanbever

USENIX Symposium on Networked Systems Design and Implementation. April 2018.

NetComplete takes as inputs configuration sketches

together with a set of high-level requirements

A configuration with “holes”

NetComplete takes as inputs configuration sketches

together with a set of high-level requirements

route-map	imp-p1	permit	10	

		?	

route-map	exp-p1	?	10	

		match	community	C2		

route-map	exp-p1	?	20		

		match	community	C1	

...

interface	TenGigabitEthernet1/1/1	

		ip	address	?	?	

		ip	ospf	cost	10	<	?	<	100	

router	ospf	100	

		?	

		...	

router	bgp	6500		

		...	

		neighbor	AS200	import	route-map	imp-p1	

		neighbor	AS200	export	route-map	exp-p1		

		...	

ip	community-list	C1	permit	?	

ip	community-list	C2	permit	?

NetComplete “autocompletes” the holes such that

the output configuration complies with the requirements

route-map	imp-p1	permit	10	

		?	

route-map	exp-p1	?	10	

		match	community	C2		

route-map	exp-p1	?	20		

		match	community	C1	

...

interface	TenGigabitEthernet1/1/1	

		ip	address	?	?	

		ip	ospf	cost	10	<	?	<	100	

router	ospf	100	

		?	

		...	

router	bgp	6500		

		...	

		neighbor	AS200	import	route-map	imp-p1	

		neighbor	AS200	export	route-map	exp-p1		

		...	

ip	community-list	C1	permit	?	

ip	community-list	C2	permit	?

route-map	imp-p1	permit	10	

		set	community	6500:1	

		set	local-pref	50	

route-map	exp-p1	permit	10	

		match	community	C2		

route-map	exp-p1	deny	20		

		match	community	C1	

...

interface	TenGigabitEthernet1/1/1	

		ip	address	10.0.0.1	255.255.255.254	

		ip	ospf	cost	15	

router	ospf	100	

		network	10.0.0.1	0.0.0.1	area	0.0.0.0	

			

router	bgp	6500		

		...	

		neighbor	AS200	import	route-map	imp-p1	

		neighbor	AS200	export	route-map	exp-p1		

		...	

ip	community-list	C1	permit	6500:1	

ip	community-list	C2	permit	6500:2

NetComplete reduces the autocompletion problem

to a constraint satisfaction problem

Encode the as a logical formula (in SMT)

protocol semantics

high-level requirements

partial configurations

First

Use a solver (Z3) to find an assignment for the undefined

configuration variables s.t. the formula evaluates to True

Then

Encode the as a logical formula (in SMT)

protocol semantics

high-level requirements

partial configurations

First

Main challenge:

Scalability

network-specific

heuristics

Insight #1 Insight #2

partial evaluation

search space navigation search space reduction

Consider this initial configuration in which

(A,C) traffic is forwarded along the direct link

150

1

10

10

150

1

DA

B C

For performance reasons,

the operators want to enable load-balancing

DA

B C

What should be the weights for this to happen?

DA

B C

input requirements

DA

B C

input requirements synthesis procedure

DA

B C

∀X ∈ Paths(A,C)\Reqs

input requirements

Cost(A→C) = Cost(A→D→C) < Cost(X)

synthesis procedure

DA

B C

∀X ∈ Paths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedureinput requirements

DA

B C

∀X ∈ Paths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedureinput requirements

DA

B C

∀X ∈ Paths(A,C)\Reqs

input requirements

150 150

300

200

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedure

150

Synthesized weights

DA

B C

150

This was easy, but…

it does not scale

∀X ∈ Paths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

∀X ∈ Paths(A,C)\Reqs

There can be an exponential number of paths

between A and C…

To scale, NetComplete leverages

Counter-Example Guided Inductive Synthesis (CEGIS)

An contemporary approach to synthesis where

a solution is iteratively learned from counter-examples

To scale, NetComplete leverages

Counter-Example Guided Inductive Synthesis (CEGIS)

While enumerating all paths is hard,

computing shortest paths given weights is easy!

Instead of considering all paths between X and Y

Consider a random subset S of them and

synthesize the weights considering S only

Instead of considering all paths between X and Y

Part 1

CEGIS

Consider a random subset S of them and

synthesize the weights considering S only

Instead of considering all paths between X and Y

Part 1

CEGIS

Fast as S is small compared to all paths

but can be wrong

intuition

Consider a random subset S of them and

synthesize the weights considering S only

Instead of considering all paths between X and Y

Fast as S is small compared to all paths

but synthesized weights can be wrong

intuition

Part 1

CEGIS

Check whether the weights found comply

with the requirements over all paths

Else take a counter-example (a path)

that violates the Reqs and add it to S

If so return

Repeat.

Consider a random subset S of them and

synthesize the weights considering S only

Instead of considering all paths between X and Y

Part 1

CEGIS

Part 2

CEGIS

Check whether the weights found comply

with the requirements over all paths

Consider a random subset S of them and

synthesize the weights considering S only

Instead of considering all paths between X and Y

Fast too

simple shortest-path computation

intuition

Part 1

CEGIS

Part 2

CEGIS

D

input requirements

A

B C

input requirements synthesis procedure

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

input requirements synthesis procedure

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

input requirements synthesis procedure

Sample: { [A,B,D,C] }

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

input requirements

Cost(A→C) = Cost(A→D→C) < Cost(X)

synthesis procedure

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedureinput requirements

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedureinput requirements

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

input requirements

150 150

300

100

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedure

150

Synthesized weights

DA

B C

300

∀X ∈ SamplePaths(A,C)\Reqs

150 150

300

100

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

150

DA

B C

300

The synthesized weights are incorrect:

cost(A → B → C]) = 250 < cost(A → C) = 300

actual path

∀X ∈ SamplePaths(A,C)\Reqs

Sample: { [A,B,D,C] } U { [A,B,C] }

DA

B C

We simply add the counter example to

SamplePaths and repeat the procedure

The entire procedure usually converges in few iterations

making it very fast in practice

Network

size

Reqs.

type

Synthesis

time

OSPF synthesis

time (sec)

16 reqs, 50% symbolic, 5 repet.

CEGIS enabled

settings

Large Simple

ECMP

Ordered

14s

13s

249s

~150 nodes

Verification

The three tales of (correct) network operations

Synthesis

Reconfiguration

going forward

going sideways

going backward

3

Snowcap: Synthesizing Network-Wide

Configuration Updates

Tibor Schneider Rüdiger Birkner Laurent Vanbever

SIGCOMM’21, August 24, 2021

Snowcap performs network reconfigurations

automatically and safely

Input

Ci Cf

initial & final
configurations

hard spec
φ

soft spec
f

Snowcap

Live Network

Compute the difference

set of commands.

Describe how

network properties change

7 / 27

It’s all about navigating the search space

of possible reconfiguration orderings

The search space is both

• sparse; and

• huge.

a

b

c

d

a b

a c

a d

b ab c

b d

c a

c b

c d

d a d b

d c
a b c

a b d

a c b

a c d

a d b

a d c

b a c
b a db c a

b c d

b d a

b d c

c a b

c a d

c b a

c b d

c d a

c d b

d a b
d a c d b a

d b c

d c a

d c b

a b c d

a b

a c b

a c d b

a d b c

a d c b

b a c d
b a d cb c a d

b c d a

b d a c

b d c a

c a b d

c a d b

c b a d

c b d a

c d a b

c d b a
d b c a

d c a b

d c b a

13 / 27

The exploration algorithm is based on DFS traversal

ba c

b a b c

b c a

a b a c

a b c a c b b c a

0 0

1 0

0

a b c

b a b c

b c a

a b c

b a b c

b c a

b a b c

b c a

rx

rfw

r1

r2

E10

1020

59

8

20

ab

c

a eBGP session: E r1

b Link weight rx r1: 10 20

c Link weight rfw r1: 5 9

15 / 27

Sequences with a known, bad prefix are not explored

ba c

b a b c

b c a

a b a c

a b c a c b b c a

0 0

1 0

0

a b c

b a b c

b c a

a b c

b a b c

b c a

b a b c

b c a

rx

rfw

r1

r2

E10

1020

59

8

20

ab

c

a eBGP session: E r1

b Link weight rx r1: 10 20

c Link weight rfw r1: 5 9

15 / 27

Greedy minimization of the cost function

ba c

b a b c

b c a

a b a c

a b c a c b b c a

0 0

1 0

0

a b c

b a b c

b c a

a b c

b a b c

b c a

b a b c

b c a

rx

rfw

r1

r2

E10

1020

59

8

20

ab

c

a eBGP session: E r1

b Link weight rx r1: 10 20

c Link weight rfw r1: 5 9

15 / 27

Greedy minimization of the cost function

ba c

b a b c

b c a

a b a c

a b c a c b b c a

0 0

1 0

0

a b c

b a b c

b c a

a b c

b a b c

b c a

b a b c

b c a

rx

rfw

r1

r2

E10

1020

59

8

20

ab

c

a eBGP session: E r1

b Link weight rx r1: 10 20

c Link weight rfw r1: 5 9

15 / 27

DFS Exploration works well in most cases

r s . . .

r s r t . . .

r s t r s u . . .

r s t u r s t v . . .

r s t u v r s t u wr s t u v r s t u w

However: What if we get stuck?

Bad decision early may cause

problems later.

Actively find the problem!

16 / 27

Snowcap uses counter-example-guided search

to resolve difficult dependencies

DFS

Exploration

Counter-example-

guided search

Snowcap . . .

• performs normal exploration

until a dead end

• follows a divide-and-conquer

approach

18 / 27

We evaluate Snowcap on a wide range of

topologies and migration scenarios

• ≈ 80 Topologies from Topology Zoo6

• Common migration scenarios7

• Random link weights and iBGP topologies.

6

S. Knight et al. “The Internet Topology Zoo”. In: IEEE JSAC. 2011.
7

Gonzalo Gomez Herrero et al. Network Mergers and Migrations: Junos Design and

Implementation. Vol. 45. John Wiley & Sons, 2011.

22 / 27

Snowcap finds solutions within seconds

Migration from iBGP full-mesh to route-reflection.

≥ 50% chance to violate reachability time

Random order 70%

Best practice order 25%

Snowcap 0% at most 12s∗

∗for 3081 commands on 82 routers.

23 / 27

Snowcap’s runtime scales very well with increasing complexity

10 100

0

2
random permutations

Snowcap

(DFS exploration)

Number of commands

Time [s]

5 20

0

30

DFS

exploration

random

permutations Snowcap

Number of difficult dependencies

Time [s]

24 / 27

Verification

The three tales of (correct) network operations

Synthesis

Reconfiguration

going forward

going sideways

going backward

Learnability

Complexity

Simplicity

We have only scratched the surface when it comes to

analyzing network computation

Learnability

Complexity

Simplicity

We have only scratched the surface when it comes to

analyzing network computation

What's the computational complexity of

configuration verification and synthesis?

Yes. SMT solving works, but is it really needed?

What's the simplest computation that can do it all?

and hopefully is easier to verify / synthesize for?

Learnability

Complexity

Simplicity

We have only scratched the surface when it comes to

analyzing network computation

Can we learn how to invert network computations?

instead of writing inverse models by hands

Learnability

Complexity

Simplicity

We have only scratched the surface when it comes to

analyzing network computation

Ege
Alex

Edgar
Roland1

Tobias

Roland2

Rüdiger

Tibor
Albert

Coralie

Romain

+ all NSG alumnis, collaborators, mentors (esp. Olivier Bonaventure and Jennifer Rexford), and colleagues!!

Merci à tous!

CoNEXT

Laurent Vanbever

Wed Dec 8 2021

nsg.ee.ethz.ch

The three tales of (correct) network operations

