
FAst In-Network Gray Failure Detection for ISPs

 

SIGCOMM’22 
August, 25 2022

Edgar Costa Molero(1),  
Stefano Vissicchio(2),  
Laurent Vanbever(1)

(2)(1)

2

ISP network

3

it does not
load!

For me it
does work!

ISP network

4

it does not
load! let me  

check

ISP network

5

it does not
load! all seems 

fine!
network monitoring

ISP network

Permanent packet loss caused by  
a malfunctioning device affecting  
a subset of the traffic

6

Gray failures are

7

Gray failures…

can be caused by

can affect

TCAM bit flips and memory corruption

CRC checksum errors

software bugs and misconfigurations

bent fibers and not well seated line-cards

single, some or all traffic entries

some or all the packets

8

0

percentage of 

operators [%]

100

14

46

73

how often they encounter

gray failures

every  

day
every  

month

every  

half year

Gray failures are a problem for a majority of operators

9

Detecting and locating gray failures requires two operations

1 to collect statistics  
of all the traffic

2 to compare the 
statistics

10

Existing ISP monitoring techniques fall short because

they do not collect statistics on all the traffic

active

passive

Heartbeat protocols (e.g., BFD)

only the heartbeat packets

Sending traffic probes
only selected probes

✗

✗

NetFlow or sFlow
only if sampled

Packet counters (e.g., SNMP)
only available switch counters

✗

✗

11

Most data center gray failure detection solutions  
do collect statistics on all traffic and compare them.

However, they still fall short in ISPs networks.

Why?

12

The characteristics of ISP networks make

data center failure detection systems not operational

No end-point control

only control network devices

High link bandwidth

100 Gbps and increasing

High latency between devices
in the order of ms

✕

13

Data center gray failure detection systems require more memory than
available in switches to operate in ISP networks

link
bandwidth

collection 
rate

memory
required per

packet

collection 
complexity

link delay

control plane
reading speed

min time

to compare

required memory to
operate

✕ >>✕

fixed

switch 
memory

FANcY: Fast In-network Gray Failure Detection for ISPs

14

Introducing

15

We designed FANcY to work with ISP network characteristics

link
bandwidth

collection 
rate

link
bandwidth

memory
required per

packet

collection 
complexity

required memory to
operate

✕ <✕

link delay

control plane
reading speed

min time

to compare

fixed

switch 
memory

#1 Collected statistics are aggregated
per traffic entry in simple counters

#2 FANcY compares the collected
statistics directly in the data plane

FANcY works in switch pairs and detects failures at the port level

16

traffic

manager

traffic

manager

upstream downstream

For each traffic entry the upstream and downstream switches 
use a packet counter to collect statistics

17

traffic

manager

traffic

manager

packet
counters

sent

packet
counters

0

0

0

0

recv

entry
counters

upstream downstream

18

traffic

manager

traffic

manager

packet
counters

entry  
status

sent

packet
counters

5

2

4

2

recv

After collecting statistics, the upstream and the downstream compare
its counters in order to find discrepancies

upstream downstream

compare
counters

19

traffic

manager

traffic

manager

packet
counters

entry  
status

sent

packet
counters

5

2

4

2

recv

faulty entry

If counters mismatch, the upstream flags the entry as faulty

 

compare
counters

upstream downstream

20

#2 Scaling to many traffic entries

FANcY uses a hybrid approach to support a big number of entries

Our design has two main challenges

#1 Synchronizing our packet counts and make them reliable

FANcY establishes counting sessions for each counter pair

21

#1 Synchronizing our packet counts and make them reliable

FANcY establishes counting sessions for each counter pair

Our design has two main challenges

#2 Scaling to many traffic entries

FANcY uses a hybrid approach to support a big number of entries

To achieve perfect synchronization and reliability

FANcY uses state machines for each counting session

22

traffic

manager

traffic

manager

packet
counters

entry  
status

sent

packet
counters

recv

counting  
session

0

0

0

0

sender  
state machine

receiver  
state machine

upstream downstream

23

traffic

manager

traffic

manager

packet
counters

entry  
status

sent

packet
counters

recv

0

0

0

0

sender  
state machine

receiver  
state machine

wait  
ack

idle

START

upstream downstream

To achieve perfect synchronization and reliability

FANcY uses state machines for each counting session

24

traffic

manager

traffic

manager

packet
counters

entry  
status

sent

packet
counters

recv

0

0

0

0

sender  
state machine

receiver  
state machine

wait  
ack

send 
ack

START ACK

upstream downstream

To achieve perfect synchronization and reliability

FANcY uses state machines for each counting session

25

traffic

manager

traffic

manager

packet
counters

entry  
status

sent

packet
counters

recv

4

0

2

0

sender  
state machine

receiver  
state machine

count

tagged
packetscount

upstream downstream

To achieve perfect synchronization and reliability

FANcY uses state machines for each counting session

26

traffic

manager

traffic

manager

packet
counters

entry  
status

sent

packet
counters

recv

7

0

5

0

sender  
state machine

receiver  
state machine

count
wait

count

STOP

upstream downstream

To achieve perfect synchronization and reliability

FANcY uses state machines for each counting session

27

traffic

manager

traffic

manager

packet
counters

entry  
status

sent

packet
counters

recv

7

0

5

0

sender  
state machine

receiver  
state machine

wait  
ack

wait

count

COUNT: 5

upstream downstream

To achieve perfect synchronization and reliability

FANcY uses state machines for each counting session

The upstream checks if there is any discrepancy between counters

28

traffic

manager

traffic

manager

packet
counters

entry  
status

sent

packet
counters

recv

7

0

5

0

sender  
state machine

receiver  
state machine

wait  
ack

check

COUNT
ACK

upstream downstream

7-5 = 2

compare

The upstream checks if there is any discrepancy between counters

If so, it flags the entry as faulty 

29

traffic

manager

traffic

manager

packet
counters

entry  
status

sent

packet
counters

recv

7

0

5

0

sender  
state machine

receiver  
state machine

wait  
ack

check

COUNT
ACK

upstream downstream

7-5 = 2

compare

30

#1 Synchronizing our packet counts and make them reliable

FANcY establishes counting sessions for each counter pair

Our design has two main challenges

#2 Scaling to many traffic entries

FANcY uses a hybrid approach to support a big number of entries

31

Having a pair of counters and state machines

per traffic entry does not scale

Each pair of counters and state machines requires 160 bits

If we want to track 1M entries (i.e all prefixes in the internet) 
we need:

~1.25 GB for a 64 port switch!

32

We can leverage the fact that gray failures tend to be sparse

and aggregate multiple traffic entries into the same counter 

33

We can leverage the fact that gray failures tend to be sparse

and aggregate multiple traffic entries into the same counter 

hash-based counter array 9457 153 6 952 6 351 8

0 w

hash1(entry)

1M entries

uniformly
distributed

34

We can leverage the fact that gray failures tend to be sparse

and aggregate multiple traffic entries into the same counter 

hash-based counter array 9457 153 6 952 6 351 8

0 w

hash1(entry)

1M entries

hash-based array from
downstream

35

We can leverage the fact that gray failures tend to be sparse

and aggregate multiple traffic entries into the same counter 

hash-based counter array 4000 000 0 000 0 000 0

0 w

hash1(entry)

1M entries

hash-based array from
downstream

36

We can leverage the fact that gray failures tend to be sparse

and aggregate multiple traffic entries into the same counter 

hash-based counter array 4000 000 0 000 0 000 0

0 w

hash1(entry)

1M entries

223 4 040 6 050 6 054 4

0 w

hash2(entry)

~ 1M/w entries

Zooming

37

We can leverage the fact that gray failures tend to be sparse

and aggregate multiple traffic entries into the same counter 

hash-based counter array 4000 000 0 000 0 000 0

0 w

hash1(entry)

1M entries

000 0 040 0 000 0 000 0

0 w

hash2(entry)

~ 1M/w entries

Zooming

hash-based array from
downstream

38

We can leverage the fact that gray failures tend to be sparse

and aggregate multiple traffic entries into the same counter 

hash-based counter array 4000 000 0 000 0 000 0

0 w

hash1(entry)

1M entries

000 0 040 0 000 0 000 0

0 w

hash2(entry)

~ 1M/w entries

Zooming

030 0 100 0 000 0 000 0

0 w

~ 1M/w2 entries

hash3(entry) Zooming

39

We can leverage the fact that gray failures tend to be sparse

and aggregate multiple traffic entries into the same counter 

hash-based counter array 4000 000 0 000 0 000 0

0 w

hash1(entry)

1M entries

000 0 040 0 000 0 000 0

0 w

hash2(entry)

~ 1M/w entries

Zooming

030 0 000 0 000 0 000 0

0 w

~ 1M/w2 entries

hash3(entry) Zooming

the hash path until here  
defines the faulty entry

4 5 1

40

hash-based counter array 4000 000 0 000 0 000 0

0 w

hash1(entry)

1M entries

000 0 040 0 000 0 000 0

0 w

hash2(entry)

~ 1M/w entries

Zooming

030 0 000 0 000 0 000 0

0 w

~ 1M/w2 entries

hash3(entry) Zooming

the hash path until here  
defines the faulty entry

4 5 1

Hash-based counters allow FANcY to scale

at the cost of reducing the detection speed and accuracy

detection  
time

FANcY can combine dedicated counter entries with

the hash-based counters 

41
upstream downstream

traffic

manager

traffic

manager

dedicated  
entries

sent

0

0

dedicated
entries

recv

0

0

high
priority

…

hash-based 
counters

…

hash-based 
counters

best

effort

1.0/8,

2.1/16, …

500 KB
budget

We evaluated FANcY accuracy and speed

42

#1 How does FANcY perform depending on the gray failure type 
and the volume of traffic affected

#2 Does FANcY work on Intel Tofino programmable switches?

Software simulations:

Hardware implementation:

~9000 lines of C++ code extending ns-3

~3000 lines of P4 code

43

#1 What is the minimum amount of traffic required for FANcY 
to detect different types of gray failures?

#2 Does FANcY work on Intel Tofino switches?

Software simulations:

Hardware implementation:

~9000 lines of C++ code extending ns-3

~3000 lines of P4 codemore in

the paper!

Multi-entry failures, uniform random drops, eval with CAIDA traces

We evaluated FANcY accuracy and speed

#1 How does FANcY perform depending on the gray failure type 
and the volume of traffic affected?

Methodology

We set the inter-switch delay to 10 ms

We run each experiment for 30 seconds

We evaluate dedicated and hash-based counters  
on single-entry gray failures

44

45

4 Kbps

100 1075 50 1 0.1

entry size 

loss rate (%)

True Positive Rate

FANcY’s hash-based counters performance with 3 layers

and counting time of 200ms

46

100 1075 50 1 0.1

loss rate (%)

25 Kbps

1 Mbps

True Positive Rate

FANcY’s hash-based counters performance with 3 layers

and counting time of 200ms

100%

4 Kbps

entry size 

100 Kbps

47

100 1075 50 1 0.1

loss rate (%)

40%

0%
20%

20%

25 Kbps

1 Mbps

True Positive Rate

FANcY’s hash-based counters performance with 3 layers

and counting time of 200ms

4 Kbps

entry size 

100 Kbps

100%
not enough  

packet drops!

48

100 1075 50 1 0.1

loss rate (%)

40%

0%
20%

20%

25 Kbps

1 Mbps

True Positive Rate

FANcY’s hash-based counters performance with 3 layers

and counting time of 200ms

4 Kbps

entry size 

100 Kbps

100%

4 Kbps

100 1075 50 1 0.1

loss rate (%)

Detection Time

49

100 1075 50 1 0.1

loss rate (%)

40%

0%
20%

20%

25 Kbps

1 Mbps

True Positive Rate

FANcY’s hash-based counters performance with 3 layers

and counting time of 200ms

4 Kbps

entry size 

100 Kbps

100%

4 Kbps

100 1075 50 1 0.1

loss rate (%)

Detection Time

680ms

∞
~1-2s

~2-5s

2-5s

∞

~10s

~10s

Detection Time

50 Kbps

25 Kbps

10 Mbps

#2 Does FANcY work on Intel Tofino programmable switches?

50

FANcY receiverFANcY

backup

sender

Hash-based counters have a depth of 3 and are 
zoomed every 200 ms

Dedicated counters are exchanged every 200 ms

51

Dedicated counters can detect gray failures after the first counting
session whereas hash-based counters need to zoom three times

0 1 2 3 4 5
0

25

50

Dedicated entry
Loss 100%

Loss 10%

Loss 1%

0 1 2 3 4 5
0

25

50

Hash-based entry
Loss 100%

Loss 10%

Loss 1%

Time (s)

B
an

d
w

id
th

(G
b
it
s/

se
c)

200 ms

~600 ms

FANcY: FAst In-Network Gray Failure Detection for ISPs

 

scales by using two types of counting data structures

uses dedicated counters and hash-based counters

runs in today’s hardware

implemented and tested on Intel Tofino Switches

detects gray failures by doing counter comparisons

reliable counter synch protocol directly in data plane

FAst In-Network Gray Failure Detection for ISPs

 

SIGCOMM’22 
August, 25 2022

Edgar Costa Molero(1),  
Stefano Vissicchio(2),  
Laurent Vanbever(1)

(2)(1)

github.com/nsg-ethz/FANcY

Thank you!

http://github.com/nsg-ethz/FANcy

