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What do these systems have in common?

They have the same problem setting.

From past traffic ...

... an ML system estimates the state
of the network to make a prediction.

MimicNet packet (drop, latency, ECN)
Puffer transmission time

GENET bitrate for next chunk



What do these systems have in common?

They have the same problem setting. But that’s about it.

From past traffic ...

... an ML system estimates the state
of the network to make a prediction.

MimicNet  packet (drop, latency, ECN)
Puffer transmission time

GENET bitrate for next chunk
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ML systems in networking do not generalize. This limits re-usability,

forcing us to repeat data collection, model design, and training.
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Is there no way to get

optimal performance

for multiple contexts and different tasks

without starting from scratch every time ?
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In NLP and CV, Transformer-based architectures

generalize by learning to infer sequence context.

NLP: Natural Language Processing; CV: Computer Vision; Images generated by OpenAl Dall-E 2. 17
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In NLP and CV, Transformer-based architectures
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Maybe we can get
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for multiple contexts and different tasks

without starting from scratch every time ?
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A general pre-trained Transformer encoder

can be combined with specific fine-tuned decoders.
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sequence of packets sequence of encoded packets

each packet augmented
with inferred context
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A general pre-trained Transformer encoder

can be combined with specific fine-tuned decoders.
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... a large and general
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From past ... while small and
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traffic ... - specific decoders
dynamics in context ...

make predictions.
sequence of packets sequence of encoded packets
each packet augmented
with inferred context
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There is a way to get
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optimal performance

for multiple contexts and different tasks

without starting from scratch every time
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We cannot just copy an NLP Transformer:

a Network Traffic Transformer (NTT) must handle network challenges!

B
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Avoid packet features tailored to a specific task.
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Challenge #3
Learn contextual dynamics during pre-training.
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We cannot just copy an NLP Transformer:

a Network Traffic Transformer (NTT) must handle network challenges!

B

Challenge #1
Avoid packet features tailored to a specific task.
— learning features

Challenge #2
Process long sequences without loosing detail.
— aggregate past packets hierarchically

Challenge #3
Learn contextual dynamics during pre-training.
— pre-train to predict end-to-end delay
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In simulation, we observe first evidence

that networking could benefit from pre-trained models as well.

We pretrain, ...

context

30 senders and
a single shared
bottleneck

task
delay prediction
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NTT

generalize.
What next?
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Our simulation results are promising, and it is time
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Re-create existing models based on NTT,

collecting new data where needed.
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Our simulation results are promising, and it is time

to

Biases in Data-Driven Networking, and
What to Do About Them

MimicNet: Fast Performance Estimates for Data

<your name here>

Re-create existing models based on NTT,

collecting new data where needed.

Create new models based-on NTT.
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Real-world applications will reveal all limits, but there

are clear steps to
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Real-world applications will reveal all limits, but there

are clear steps to

b . . . .

Frame 56: 122 bytes on wire (976 bits)
Ethernet II, Src: RivetNet_db:Be:93 (9
Internet Protocol Version 4, Src: 192.
Transmission Control Protocol, Src Por
Secure Sockets Layer

How can we represent any

combination of headers?
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Real-world applications will reveal all limits, but there

are clear steps to

b . . . .

Frame 56: 122 bytes on wire (976 bits)
Ethernet II, Src: RivetNet_db:Be:93 (9
Internet Protocol Version 4, Src: 192.
Transmission Control Protocol, Src Por
Secure Sockets Layer

15 32

Linear Layers

- |

Linear Layers
most recent—
| 992 5 32

---------------------

How can we represent any

combination of headers?

Which aggregation levels cover

all significant network interactions?
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Transformer models like NTT extract and compress information,
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Transformer models like NTT extract and compress information,

data

train from large traces every time

/100 in NLP!
download a pre-trained model

model

storage space
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Transformer models like NTT extract and compress information,

data

/100 in NLP!

model

storage space

private data } NTT,
combined
private data } NTT: public
NTT
private data } NTT;

(oY}
Ll

00

train from large traces every time

download a pre-trained model

share private data

combine insights via federated learning
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