
A New Hope for
Network Model Generalization
ACM HotNets 2022

Alexander Dietmüller
Siddhant Ray
Romain Jacob

Laurent Vanbever



2

Network simulation
SIGCOMM’21
[MimicNet]

What do these systems have in common?

Video streaming
NSDI’20
[Puffer]

Data-driven networking
HotNets’16
[Biases] 

Video streaming,
congestion control, and
load balancing
SIGCOMM’22
[GENET]
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What do these systems have in common?
They have the same problem setting.

MimicNet packet (drop, latency, ECN)

Puffer transmission time

GENET bitrate for next chunk

...

From past traffic ... … an ML system estimates the state
of the network to make a prediction.
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From past traffic ...

What do these systems have in common?
They have the same problem setting. But that’s about it.

… an ML system estimates the state
of the network to make a prediction.

MimicNet packet (drop, latency, ECN)

Puffer transmission time

GENET bitrate for next chunk

...
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ML systems in networking do not generalize. 

tailored to network context & task
(e.g. predict wireless loss)
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WHAT
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SO
WHAT

are the
consequences for
ML in networking?
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tailored to network context & task
(e.g. predict wireless loss)

ML systems in networking do not generalize. This limits re-usability,
forcing us to repeat data collection, model design, and training.  
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Same task (predict loss) with data from

a context in situ ✓ [Puffer]

tailored to network context & task
(e.g. predict wireless loss)

ML systems in networking do not generalize. This limits re-usability,
forcing us to repeat data collection, model design, and training.  
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Same task (predict loss) with data from

a context in situ ✓ [Puffer]

a similar context (wireless) ✓/✗ [GENET]
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multiple contexts (both) ✗

tailored to network context & task
(e.g. predict wireless loss)

ML systems in networking do not generalize. This limits re-usability,
forcing us to repeat data collection, model design, and training.  



13

Same task (predict loss) with data from

a context in situ ✓ [Puffer]

a similar context (wireless) ✓/✗ [GENET]

a different context (wired) ✗
[Biases]

multiple contexts (both) ✗

Different task (e.g. predict delay)

 ✗ (requires a completely new model and data)

tailored to network context & task
(e.g. predict wireless loss)

ML systems in networking do not generalize. This limits re-usability,
forcing us to repeat data collection, model design, and training.  
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◆    optimal performance

◆    for multiple contexts and different tasks

◆    without starting from scratch every time  ?

Is there no way to get
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A New Hope for
Network Model Generalization



16NLP: Language Processing; CV: Computer Vision; Images generated by OpenAI Dall-E 2.

CV

NLP

Networking
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In NLP and CV, Transformer-based architectures
generalize by learning to infer sequence context.

NLP: Natural Language Processing; CV: Computer Vision; Images generated by OpenAI Dall-E 2.



18NLP: Natural Language Processing; CV: Computer Vision; Images generated by OpenAI Dall-E 2.

Dall-E 2
input: (text)
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In NLP and CV, Transformer-based architectures
generalize by learning to infer sequence context.
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Stick to that hand.

NLP: Natural Language Processing; CV: Computer Vision; Images generated by OpenAI Dall-E 2.

Hand me that stick!
Dall-E 2
input: (text)

output: (generated image)

In NLP and CV, Transformer-based architectures
generalize by learning to infer sequence context.
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Stick to that hand.

NLP: Natural Language Processing; CV: Computer Vision; Images generated by OpenAI Dall-E 2.

wireless

wire
d

Hand me that stick!
Dall-E 2
input: (text)

output: (generated image)

In NLP and CV, Transformer-based architectures
generalize by learning to infer sequence context.
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◆    optimal performance

◆    for multiple contexts and different tasks

◆    without starting from scratch every time  ?

Maybe we can get
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A general pre-trained Transformer encoder
can be combined with specific fine-tuned decoders.
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From past 
traffic ...

… a large and general
Transformer learns

dynamics in context ...

sequence of encoded packets
each packet augmented
with inferred context

sequence of packets

A general pre-trained Transformer encoder
can be combined with specific fine-tuned decoders.



25

From past 
traffic ...

… a large and general
Transformer learns

dynamics in context ...

… while small and 
specific decoders 
make predictions.

A general pre-trained Transformer encoder
can be combined with specific fine-tuned decoders.

sequence of encoded packets
each packet augmented
with inferred context

sequence of packets



26

◆    optimal performance

◆    for multiple contexts and different tasks

◆    without starting from scratch every time   !

There is a way to get
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We cannot just copy an NLP Transformer:
a Network Traffic Transformer (NTT) must handle network challenges!
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We cannot just copy an NLP Transformer:
a Network Traffic Transformer (NTT) must handle network challenges!

Challenge #1
Avoid packet features tailored to a specific task.

Challenge #2
Process long sequences without losing detail.

Challenge #3
Learn contextual dynamics during pre-training.
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We cannot just copy an NLP Transformer:
a Network Traffic Transformer (NTT) must handle network challenges!

Challenge #1
Avoid packet features tailored to a specific task.
→ learning features

Challenge #2
Process long sequences without loosing detail.
→ aggregate past packets hierarchically

Challenge #3
Learn contextual dynamics during pre-training.
→ pre-train to predict end-to-end delay



30

In simulation, we observe first evidence
that networking could benefit from pre-trained models as well.

context
30 senders and
a single shared 
bottleneck

task
delay prediction

We pretrain, ...
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… and find that we:

◆   get equal or better performance 

◆   with less training time

compared to starting from scratch. 

We pretrain, ... … fine-tune, ...
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In simulation, we observe first evidence
that networking could benefit from pre-trained models as well.

context
30 senders and
a single shared 
bottleneck

task
delay prediction

with different contexts
indep. bottlenecks with 
unobserved cross-traffic

with another task
predict message 
completion time

… and find that we:

◆   get equal or better performance 

◆   with less training time

compared to starting from scratch. 

We pretrain, ... … fine-tune, ...
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NTT may  generalize.
What next?
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Our simulation results are promising, and it is time
to use and evaluate NTT-based models in the real-world.

Re-create existing models based on NTT,
collecting new data where needed.
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Our simulation results are promising, and it is time
to use and evaluate NTT-based models in the real-world.

Re-create existing models based on NTT,
collecting new data where needed.

Create new models based-on NTT.

<your name here>
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Real-world applications will reveal all limits, but there
are clear steps to refine the NTT design.
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Real-world applications will reveal all limits, but there
are clear steps to refine the NTT design.

How can we represent any
combination of headers?
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Real-world applications will reveal all limits, but there
are clear steps to refine the NTT design.

How can we represent any
combination of headers?

Which aggregation levels cover
all significant network interactions?
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Transformer models like NTT extract and compress information,
facilitating sharing and collaboration.
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train from large traces every time

download a pre-trained model

storage space

data

model

1/100  in NLP !
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Transformer models like NTT extract and compress information,
facilitating sharing and collaboration.

train from large traces every time

download a pre-trained model

private data

private data

private data

NTT1

NTT2

NTT3

combined
public
NTT

storage space

data

model

1/100  in NLP !

share private data

combine insights via federated learning
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Transformers

Pretraining

Networking
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