
Generating representative, live network traffic

out of millions of code repositories

ACM HotNets

Tobias Bühler, Roland Schmid,

Sandro Lutz, Laurent Vanbever

Nov 14 2022

nsg.ee.ethz.chETH Zürich

2

Today, we only have a few gold nuggets of network data available

Picture: https://www.scienceimage.csiro.au/image/10458

MAWI

Intrusion Detection
Evaluation Dataset

(CIC-IDS2017)

RIPE Atlas

CAIDA

https://www.scienceimage.csiro.au/image/10458

3

We believe there exists an entire gold mine/pile of network data

Picture: https://labs.openai.com/s/zD0NTe1h8FPJPCsjSlkZvKMv

https://labs.openai.com/s/zD0NTe1h8FPJPCsjSlkZvKMv

4

We believe there exists an entire gold mine/pile of network data

Picture: https://labs.openai.com/s/zD0NTe1h8FPJPCsjSlkZvKMv
Numbers: https://octoverse.github.com/
 https://en.wikipedia.org/wiki/Timeline_of_GitHub

20222008

0

338M

GitHub
repositories

year

https://labs.openai.com/s/zD0NTe1h8FPJPCsjSlkZvKMv
https://octoverse.github.com/
https://en.wikipedia.org/wiki/Timeline_of_GitHub

5

In order to tap into this gold mine,

we have to bridge the gap from static text/code to actual network data

6

In order to tap into this gold mine,

we have to bridge the gap from static text/code to actual network data

Extracts high-level traffic insights

Static code analysis Analyze usage of network functions

Generates live traffic which reacts to network events

Running the code Compile and run each open-source project

??? The next crazy idea

7

In order to tap into this gold mine,

we have to bridge the gap from static text/code to actual network data

Extracts high-level traffic insights

Static code analysis Analyze usage of network functions

Generates live traffic which reacts to network events

Running the code Compile and run each open-source project

??? The next crazy idea

8

However, executing arbitrary open-source projects is challenging

Arbitrary code, language and APIs

Arbitrary code How do we build the projects?

Missing commands, dependencies and support

Missing documentation How do we run the projects?

Unexpected crashes, inputs and runtime

Unexpected errors How do we handle bugs and errors?

9

We leverage the rise of automation frameworks

which allow to compile and run arbitrary code

10

We leverage the rise of automation frameworks

which allow to compile and run arbitrary code

Contain all the code and its dependencies

Docker containers Are a standalone, executable package

11

We leverage the rise of automation frameworks

which allow to compile and run arbitrary code

Contain all the code and its dependencies

Docker containers Are a standalone, executable package

A single command builds and starts all of them

Orchestration files Define how multiple containers are configured

12

Our vision is to combine big data and container solutions

to generate representative, live network traffic

with respect to a
given user specification

13

Our vision is to combine big data and container solutions

to generate representative, live network traffic

14

Our vision is to combine big data and container solutions

to generate representative, live network traffic

with respect to a
given user specification

traffic/applications that
react to network events

15

Input DYNAMO Output

orchestration
representative, live

network traffic
high-level

traffic specification

16

Input DYNAMO Output

orchestration
representative, live

network traffic
high-level

traffic specification

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

17

Input DYNAMO Output

container
orchestration

representative, live
network traffic

high-level
traffic specification

traffic-generating
projects

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

18

Input DYNAMO Output

container
orchestration

representative, live
network traffic

high-level
traffic specification

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

traffic-generating
projects

for physical or
virtual networks

test security apps
with realistic

background traffic

19

DYNAMO first searches for traffic-generating projects

20

338M repositories available

DYNAMO first searches for traffic-generating projects

21

338M repositories

> 2M orchestration files

found via GitHub
API queries

available

orchestrable

DYNAMO first searches for traffic-generating projects

22

338M repositories

> 2M orchestration files

found via GitHub
API queries

so far, 6 VMs running
for ~9 months

available

> 74k orchestration files

orchestrable

traffic-generating

DYNAMO first searches for traffic-generating projects

23

Users then specify traffic requirements in a

Declarative Traffic Specification Language

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Example specification
What kind of traffic?

Between which hosts?

How much traffic?

24

Users then specify traffic requirements in a

Declarative Traffic Specification Language

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Example specification
What kind of traffic?

Between which hosts?

How much traffic?

25

Users then specify traffic requirements in a

Declarative Traffic Specification Language

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Example specification
What kind of traffic?

Between which hosts?

How much traffic?

26

Users then specify traffic requirements in a

Declarative Traffic Specification Language

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Example specification
What kind of traffic?

Between which hosts?

How much traffic?

27

Users then specify traffic requirements in a

Declarative Traffic Specification Language

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Example specification
What kind of traffic?

Between which hosts?

How much traffic?

28

Given a specification,

DYNAMO generates matching live traffic

Example specification

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Example specification

29

Given a specification,

DYNAMO generates matching live traffic

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Traffic generation

Send live traffic through
a given user network

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Example specification

30

To achieve that,

DYNAMO needs to orchestrate matching containers

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Traffic generation

Send live traffic through
a given user network

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps
O

rc
he

st
ra

tio
n

La
ye

r
#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Identified projects

Example specification

31

To achieve that,

DYNAMO needs to orchestrate matching containers

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Traffic generation

Send live traffic through
a given user network

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps
O

rc
he

st
ra

tio
n

La
ye

r
#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Identified projects

Setup

Run the correct
containers

Example specification

32

To achieve that,

DYNAMO needs to orchestrate matching containers

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Traffic generation

Send live traffic through
a given user network

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps
O

rc
he

st
ra

tio
n

La
ye

r
#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Identified projects

Setup

Run the correct
containers

Combine to
virtual hosts

Orchestration

33

DYNAMO enables many use cases

And we'd love to hear more from you!

E.g., to combine with attack traffic

Security testing DYNAMO generates real background traffic

E.g., impact of packet loss on Bitcoin traffic

Network design DYNAMO tests applications under different designs

E.g., to complement skewed ML training data

Trace generation DYNAMO creates data sets with specific properties

34

Our preliminary trace analysis shows

the potential of the idea

35

web (HTTP, HTTPS)

crypto (Bitcoin, IPFS)

database (MongoDB, MySQL)

message-broker (RabbitMQ, Apache Kafka)

We found a wide range of traffic-generating applications

Our preliminary trace analysis shows

the potential of the idea

> 13M pkts (~417 Mbps), a multi-paxos implementation: thibmeu/imperial-multi-paxos-in-elixir

Some of the applications generate a lot of traffic

> 367k flows (~4 Mbps), a Telegram proxy: squizduos/docker-server

36

web (HTTP, HTTPS)

crypto (Bitcoin, IPFS)

database (MongoDB, MySQL)

message-broker (RabbitMQ, Apache Kafka)

We found a wide range of traffic-generating applications

Our preliminary trace analysis shows

the potential of the idea

https://github.com/squizduos/docker-server
https://github.com/thibmeu/imperial-multi-paxos-in-elixir

37

DYNAMO showcases one approach to bridge the gap

from static text/code to actual network data

Static code analysis

Running the code

Meta relationships

Static text Network data

ML-based techniques

38

DYNAMO showcases one approach to bridge the gap

from static text/code to actual network data

Static code analysis

Running the code

Meta relationships

Static text Network data

Code completion

Bug testing

ML-based techniques

39

DYNAMO showcases one approach to bridge the gap

from static text/code to actual network data

Traffic-generating
projects

Static code analysis

Running the code

Meta relationships

Static text Network data

ML-based techniques

Code completion

Bug testing

https://doi.org/10.5281/zenodo.7194189
https://doi.org/10.5281/zenodo.7194189

