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Packet scheduling defines which packet  

to send next and when
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Enforce fairness

Send one packet from each class at a time RR, WFQ

Researchers have proposed dozens of scheduling algorithms  

Minimize tail latency

Prioritize packets with high slack time FIFO+, LSTF

Minimize flow completion times

Prioritize packets from short flows SRPT, PIAS



ASICs lack sufficient resources
✘

Implement each of them on hardware

How can we deploy all scheduling algorithms? 



Invent a universal packet scheduler

No silver bullet in packet scheduling
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Invent a universal packet scheduler

No silver bullet in packet scheduling

Design an abstraction to represent all schedulers
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Invent a universal packet scheduler

No silver bullet in packet scheduling

✔

✘

✘

Programmable scheduling

Implement each of them on hardware

How can we deploy all scheduling algorithms? 

ASICs lack sufficient resources



p.rank = f.size

f = flow(p)

Programmable scheduler

Push-In First-Out (PIFO) queues enable 

programmable scheduling
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PIFO queue 
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PIFO queues are characterized by  

two key behaviors

Enqueue packets with lowest ranks

Admission

Forward packets in rank order

Scheduling
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How to implement PIFO queues on hardware? 



Multiple years

✔

✘

High accuracy

✘

New ASIC

How to implement PIFO queues on hardware? 

~200M $
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Enough accuracy ?

~200M $

✔

✘ ✔

✘ ✔

New ASIC

~10K $

Available today

How to implement PIFO queues on hardware? 

Multiple years

Programmable

switches

High accuracy
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Abstract
Push-In First-Out (PIFO) queues are hardware primitives

which enable programmable packet scheduling by providing
the abstraction of a priority queue at line rate. However, imple-
menting them at scale is not easy: just hardware designs (not
implementations) exist, which support only about 1k flows.

In this paper, we introduce SP-PIFO, a programmable
packet scheduler which closely approximates the behavior
of PIFO queues using strict-priority queues—at line rate, at
scale, and on existing devices. The key insight behind SP-

PIFO is to dynamically adapt the mapping between packet
ranks and available strict-priority queues to minimize the
scheduling errors with respect to an ideal PIFO. We present
a mathematical formulation of the problem and derive an
adaptation technique which closely approximates the optimal
queue mapping without any traffic knowledge.

We fully implement SP-PIFO in P4 and evaluate it on real
workloads. We show that SP-PIFO: (i) closely matches PIFO,
with as little as 8 priority queues; (ii) scales to large amount of
flows and ranks; and (iii) quickly adapts to traffic variations.
We also show that SP-PIFO runs at line rate on existing hard-
ware (Barefoot Tofino), with a negligible memory footprint.

1 Introduction

Until recently, packet scheduling was one of the last bastions
standing in the way of complete data-plane programmability.
Indeed, unlike forwarding whose behavior can be adapted
thanks to languages such as P4 [7] and reprogrammable hard-
ware [2], scheduling behavior is mostly set in stone with
hardware implementations that can, at best, be configured.

To enable programmable packet scheduling, the main chal-
lenge was to find an appropriate abstraction which is flexible
enough to express a wide variety of scheduling algorithms and
yet can be implemented efficiently in hardware [22]. In [23],
Sivaraman et al. proposed to use Push-In First-Out (PIFO)
queues as such an abstraction. PIFO queues allow enqueued
packets to be pushed in arbitrary positions (according to the
packets rank) while being drained from the head.

Incoming packets sequence

already enqueued
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Figure 1: SP-PIFO approximates the behavior of PIFO queues
by adapting how packet ranks are mapped to priority queues.

While PIFO queues enable programmable scheduling, im-
plementing them in hardware is hard due to the need to ar-
bitrarily sort packets at line rate. [23] described a possible
hardware design (not implementation) supporting PIFO on
top of Broadcom Trident II [1]. While promising, realizing
this design in an ASIC is likely to take years [6], not includ-
ing deployment. Even ignoring deployment considerations,
the design of [23] is limited as it only supports ~1000 flows
and relies on the assumption that the packet ranks increase
monotonically within each flow, which is not always the case.

Our work In this paper, we ask whether it is possible to ap-
proximate PIFO queues at scale, in existing programmable
data planes. We answer positively and present SP-PIFO,
an adaptive scheduling algorithm that closely approximates
PIFO behaviors on top of widely-available Strict-Priority (SP)
queues. The key insight behind SP-PIFO is to dynamically
adapt the mapping between packet ranks and SP queues in
order to minimize the amount of scheduling mistakes relative
to a hypothetical ideal PIFO implementation.

SP-PIFO approximates PIFO’s scheduling using  

strict-priority queues

NSDI’20
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SP-PIFO approximates PIFO’s scheduling using  

strict-priority queues



Inversion

PIFO queue 
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SP-PIFO approximates PIFO’s scheduling using  

strict-priority queues



p.rank = f.size

f = flow(p)

Programmable scheduler

1

23

445

programmable
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Mapping 

strategy

SP-PIFO approximates PIFO’s scheduling using 

strict-priority queues and a dynamic mapping strategy



SP-PIFO
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5 5 4

12

Low-priority  
packets enqueued

High-priority  
packets dropped

PIFO
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Low-priority 
packets dropped
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Input sequence

Input sequence

2 11 2 5 4

SP-PIFO approximates PIFO’s scheduling, but not admission 



AIFO approximates PIFO’s admission on  

a single FIFO queue

SIGCOMM’21



p.rank = f.size

f = flow(p)

Programmable scheduler
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Admission 
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AIFO approximates PIFO’s admission on  

a single FIFO queue
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PIFO

11222 1 2
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AIFO
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Priority

Low-priority  
packets first

AIFO approximates PIFO’s admission, but not scheduling 



HCSFQ (NSDI ’21)

Existing works only approximate one PIFO behavior 

Spring (INFOCOM ’22)

AIFO (SIGCOMM ’21)

AQ (SIGCOMM ’23)

Enqueue packets with lowest ranks

Admission

Forward packets in rank order

Scheduling

SP-PIFO (NSDI ’20)

PCQ (NSDI ’20)

GearBox (NSDI ’22)

QCluster (WWW ’22)



“Everything matters”

Enqueue packets with lowest ranks

Admission

Forward packets in rank order

Scheduling

Existing works only approximate one PIFO behavior 



Can we approximate both PIFO behaviors

on existing programmable switches?



 Introducing… 

PACKS

A programmable scheduler  

approximating both PIFO behaviors
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PACKS combines an admission- and a queue mapping-strategy 



drop like PIFO

Admission Control
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sort like PIFO

Queue Mapping

PACKS combines an admission- and a queue mapping-strategy 



PACKS combines an admission- and a queue mapping-strategy 
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Input sequence

2 11 2 5 4

4 packets

Buffer availability

PACKS combines an admission- and a queue mapping-strategy 

r < ?
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Rank distribution (W)

41 2 5

1 2

2 11 2 5 4

PACKS combines an admission- and a queue mapping-strategy 
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B = 4 packets

Buffer availability

Input sequence

B Dropped



Rank distribution (W)

41 2 5

1 2

2 11 2 5 4

PACKS combines an admission- and a queue mapping-strategy 

?

?
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Buffer availability

Input sequence

B Dropped

r < 3

rdrop = 3



Rank distribution (W)

41 2 5
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PACKS combines an admission- and a queue mapping-strategy 

?
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B = 4 packets

Buffer availability

Input sequence

B Dropped

r < 3

rdrop = 3

s . t . , W . quantile(rdrop − 1) ≤
B

|W |

maximize rdrop



Input sequence
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PACKS combines an admission- and a queue mapping-strategy 

sort like PIFO

Queue Mapping



Input sequence

2 1 2 5 4
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?
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PACKS combines an admission- and a queue mapping-strategy 

Rank distribution (W)

41 2 5

1 2

B Dropped

B1 = 2 packets

B2 = 2 packets

Queue Availability



Input sequence
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PACKS combines an admission- and a queue mapping-strategy 

Rank distribution (W)
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B1 = 2 packets
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Queue Availability



Input sequence

1

2

41 2 5

1 2

Dropped

2 11 2 5 4

B1 B2

q1 = 1, q2 = 2
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PACKS combines an admission- and a queue mapping-strategy 

Rank distribution (W)

maximize qi

s . t . , W . quantile(qi) ≤
∑i

j=1 Bj

|W |



How to translate the algorithm to the online case? 

How to monitor the rank distribution?

How to adapt to buffer dynamism?

How to account for workload shifts?



How to translate the algorithm to the online case? 

How to monitor the rank distribution?

Use a sliding window of latest ranks

How to adapt to buffer dynamism?

How to account for workload shifts?



How to translate the algorithm to the online case? 

How to monitor the rank distribution?

How to adapt to buffer dynamism?

Use a sliding window of latest ranks

Measure per-packet queue occupancy
W . quantile(r) ≤

∑i
j=1 (Bj − bj)

B

Per-packet  

queue occupancy

How to account for workload shifts?



How to translate the algorithm to the online case? 

How to monitor the rank distribution?

How to adapt to buffer dynamism?

Use a sliding window of latest ranks

Measure per-packet queue occupancy
W . quantile(r) ≤ α ⋅

∑i
j=1 (Bj − bj)

B

How to account for workload shifts?

Allow a certain amount of bursts

Burst

allowance



tracking
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Buffer occupancy

41 2 5
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W . quantile(r) ≤ α ⋅
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j=1 (Bj − bj)
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PACKS

Quantile Queue occupancy

monitoring

Sliding window
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tracking

4

Buffer occupancy

41 2 5

2

Admission and queue mapping

W . quantile(r) ≤ α ⋅
∑i

j=1 (Bj − bj)

B

Enqueue if: 

PACKS

Quantile Queue occupancy

monitoring

Sliding window
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Scan top-down



Packet-level simulation (NetBench)

Hardware evaluation (Intel Tofino2)

Bandwidth allocation across priorities

We evaluated PACKS on hardware and simulations 

Performance in approximating PIFO

Sensitivity to configuration parameters

Practicality under pFabric and FQ scenarios

Heuristic analysis (MetaOpt)

Adversarial workload analysis



PACKS reduces packet drops by up to 60%  

compared to SP-PIFO
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compared to SP-PIFO and AIFO
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PACKS reduces mean FCTs by up to 33% and 2.6x  

compared to SP-PIFO and AIFO
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PACKS approximates PIFO’s admission and scheduling behaviors

at line rate, on existing programmable switches

PACKS adapts to traffic workloads in real time

using a sliding window and queue-aware policies

PACKS outperforms existing approaches

reducing drops, inversions, and flow completion times

github.com/nsg-ethz/packs
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