
Balázs Vass

Pooria Namyar

Albert Gran Alcoz

NSDI ’25

Behnaz Arzani

Everything Matters in Programmable Packet Scheduling

Gábor Rétvári Laurent Vanbever

Packet scheduling defines which packet

to send next and when

2

5 4

31

3

4 ?

Buffer

Enforce fairness

Send one packet from each class at a time RR, WFQ

Researchers have proposed dozens of scheduling algorithms

Minimize tail latency

Prioritize packets with high slack time FIFO+, LSTF

Minimize flow completion times

Prioritize packets from short flows SRPT, PIAS

ASICs lack sufficient resources
✘

Implement each of them on hardware

How can we deploy all scheduling algorithms?

Invent a universal packet scheduler

No silver bullet in packet scheduling

✘

✘

Implement each of them on hardware

How can we deploy all scheduling algorithms?

ASICs lack sufficient resources

Invent a universal packet scheduler

No silver bullet in packet scheduling

Design an abstraction to represent all schedulers

✘

✘

Implement each of them on hardware

How can we deploy all scheduling algorithms?

ASICs lack sufficient resources

Invent a universal packet scheduler

No silver bullet in packet scheduling

✔

✘

✘

Programmable scheduling

Implement each of them on hardware

How can we deploy all scheduling algorithms?

ASICs lack sufficient resources

p.rank = f.size

f = flow(p)

Programmable scheduler

Push-In First-Out (PIFO) queues enable

programmable scheduling

2

PIFO queue

5 4 4 3 1

fixed

programmable
Rank computation

PIFO queue

5 4 4 3 1

fixed

PIFO queues are characterized by

two key behaviors

Enqueue packets with lowest ranks

Admission

Forward packets in rank order

Scheduling

2

How to implement PIFO queues on hardware?

Multiple years

✔

✘

High accuracy

✘

New ASIC

How to implement PIFO queues on hardware?

~200M $

Programmable

switches

✔

✘ ~10K $

Available today

✔

✘ ✔

New ASIC

~200M $

How to implement PIFO queues on hardware?

Multiple years

High accuracy

Enough accuracy ?

~200M $

✔

✘ ✔

✘ ✔

New ASIC

~10K $

Available today

How to implement PIFO queues on hardware?

Multiple years

Programmable

switches

High accuracy

SP-PIFO: Approximating Push-In First-Out Behaviors
using Strict-Priority Queues

Albert Gran Alcoz
ETH Zürich

Alexander Dietmüller
ETH Zürich

Laurent Vanbever
ETH Zürich

Abstract
Push-In First-Out (PIFO) queues are hardware primitives

which enable programmable packet scheduling by providing
the abstraction of a priority queue at line rate. However, imple-
menting them at scale is not easy: just hardware designs (not
implementations) exist, which support only about 1k flows.

In this paper, we introduce SP-PIFO, a programmable
packet scheduler which closely approximates the behavior
of PIFO queues using strict-priority queues—at line rate, at
scale, and on existing devices. The key insight behind SP-

PIFO is to dynamically adapt the mapping between packet
ranks and available strict-priority queues to minimize the
scheduling errors with respect to an ideal PIFO. We present
a mathematical formulation of the problem and derive an
adaptation technique which closely approximates the optimal
queue mapping without any traffic knowledge.

We fully implement SP-PIFO in P4 and evaluate it on real
workloads. We show that SP-PIFO: (i) closely matches PIFO,
with as little as 8 priority queues; (ii) scales to large amount of
flows and ranks; and (iii) quickly adapts to traffic variations.
We also show that SP-PIFO runs at line rate on existing hard-
ware (Barefoot Tofino), with a negligible memory footprint.

1 Introduction

Until recently, packet scheduling was one of the last bastions
standing in the way of complete data-plane programmability.
Indeed, unlike forwarding whose behavior can be adapted
thanks to languages such as P4 [7] and reprogrammable hard-
ware [2], scheduling behavior is mostly set in stone with
hardware implementations that can, at best, be configured.

To enable programmable packet scheduling, the main chal-
lenge was to find an appropriate abstraction which is flexible
enough to express a wide variety of scheduling algorithms and
yet can be implemented efficiently in hardware [22]. In [23],
Sivaraman et al. proposed to use Push-In First-Out (PIFO)
queues as such an abstraction. PIFO queues allow enqueued
packets to be pushed in arbitrary positions (according to the
packets rank) while being drained from the head.

Incoming packets sequence

already enqueued

341452

PIFO queue (theoretical)

1234452 123445

SP-PIFO (approximation)

445

312

suboptimal output

strategy A

[1–3]

[4–5]
312445

2

3445

12
strategy B

[1–2]

[3–5]

2
123445

optimal output

Figure 1: SP-PIFO approximates the behavior of PIFO queues
by adapting how packet ranks are mapped to priority queues.

While PIFO queues enable programmable scheduling, im-
plementing them in hardware is hard due to the need to ar-
bitrarily sort packets at line rate. [23] described a possible
hardware design (not implementation) supporting PIFO on
top of Broadcom Trident II [1]. While promising, realizing
this design in an ASIC is likely to take years [6], not includ-
ing deployment. Even ignoring deployment considerations,
the design of [23] is limited as it only supports ~1000 flows
and relies on the assumption that the packet ranks increase
monotonically within each flow, which is not always the case.

Our work In this paper, we ask whether it is possible to ap-
proximate PIFO queues at scale, in existing programmable
data planes. We answer positively and present SP-PIFO,
an adaptive scheduling algorithm that closely approximates
PIFO behaviors on top of widely-available Strict-Priority (SP)
queues. The key insight behind SP-PIFO is to dynamically
adapt the mapping between packet ranks and SP queues in
order to minimize the amount of scheduling mistakes relative
to a hypothetical ideal PIFO implementation.

SP-PIFO approximates PIFO’s scheduling using

strict-priority queues

NSDI’20

~
PIFO queue

5 4 4 3 12

1

3

44

2

5

Strict-priority

queues

~

One rank per queueIdeal case

SP-PIFO approximates PIFO’s scheduling using

strict-priority queues

Inversion

PIFO queue

5 4 4 3 12

1

3

44

2

5

Strict-priority

queues

Multiple ranks per queue

In practice

~~

SP-PIFO approximates PIFO’s scheduling using

strict-priority queues

p.rank = f.size

f = flow(p)

Programmable scheduler

1

23

445

programmable
Rank computation Strict-priority

queues

Mapping

strategy

SP-PIFO approximates PIFO’s scheduling using

strict-priority queues and a dynamic mapping strategy

SP-PIFO

2

5 5 4

12

Low-priority
packets enqueued

High-priority
packets dropped

PIFO

1122

Low-priority
packets dropped

2 11 2 5 4

Input sequence

Input sequence

2 11 2 5 4

SP-PIFO approximates PIFO’s scheduling, but not admission

AIFO approximates PIFO’s admission on

a single FIFO queue

SIGCOMM’21

p.rank = f.size

f = flow(p)

Programmable scheduler

123

4 5

programmable
Rank computation FIFO

Queue

Admission

strategy

AIFO approximates PIFO’s admission on

a single FIFO queue

112 2

PIFO

11222 1 2

Input sequence

Input sequence

2 11 2 5 4 r < 3

AIFO

145

Priority

Low-priority
packets first

AIFO approximates PIFO’s admission, but not scheduling

HCSFQ (NSDI ’21)

Existing works only approximate one PIFO behavior

Spring (INFOCOM ’22)

AIFO (SIGCOMM ’21)

AQ (SIGCOMM ’23)

Enqueue packets with lowest ranks

Admission

Forward packets in rank order

Scheduling

SP-PIFO (NSDI ’20)

PCQ (NSDI ’20)

GearBox (NSDI ’22)

QCluster (WWW ’22)

“Everything matters”

Enqueue packets with lowest ranks

Admission

Forward packets in rank order

Scheduling

Existing works only approximate one PIFO behavior

Can we approximate both PIFO behaviors

on existing programmable switches?

 Introducing…

PACKS

A programmable scheduler

approximating both PIFO behaviors

PIFO

11222 1 2

Input sequence

145

Input sequence

1

2
r < 3

11

22

Objective

2 11 2 5 4

PACKS combines an admission- and a queue mapping-strategy

drop like PIFO

Admission Control

?

?
r < ?

Input sequence

2 11 2 5 4

sort like PIFO

Queue Mapping

PACKS combines an admission- and a queue mapping-strategy

PACKS combines an admission- and a queue mapping-strategy

?

?
r < ?

Input sequence

2 11 2 5 4

drop like PIFO

Admission Control

Input sequence

2 11 2 5 4

4 packets

Buffer availability

PACKS combines an admission- and a queue mapping-strategy

r < ?
?

?

6 packets

Rank distribution (W)

41 2 5

1 2

2 11 2 5 4

PACKS combines an admission- and a queue mapping-strategy

r < ?
?

?

B = 4 packets

Buffer availability

Input sequence

B Dropped

Rank distribution (W)

41 2 5

1 2

2 11 2 5 4

PACKS combines an admission- and a queue mapping-strategy

?

?

B = 4 packets

Buffer availability

Input sequence

B Dropped

r < 3

rdrop = 3

Rank distribution (W)

41 2 5

1 2

2 11 2 5 4

PACKS combines an admission- and a queue mapping-strategy

?

?

B = 4 packets

Buffer availability

Input sequence

B Dropped

r < 3

rdrop = 3

s . t . , W . quantile(rdrop − 1) ≤
B

|W |

maximize rdrop

Input sequence

2 1 2 5 4
?

?
1 r < 3

PACKS combines an admission- and a queue mapping-strategy

sort like PIFO

Queue Mapping

Input sequence

2 1 2 5 4
?

?
1 r < 3

PACKS combines an admission- and a queue mapping-strategy

Rank distribution (W)

41 2 5

1 2

B Dropped

B1 = 2 packets

B2 = 2 packets

Queue Availability

Input sequence

2 1 2 5 4
?

?
1 r < 3

PACKS combines an admission- and a queue mapping-strategy

Rank distribution (W)

41 2 5

1 2

DroppedB1 B2

B1 = 2 packets

B2 = 2 packets

Queue Availability

Input sequence

1

2

41 2 5

1 2

Dropped

2 11 2 5 4

B1 B2

q1 = 1, q2 = 2

11

22
r < 3

PACKS combines an admission- and a queue mapping-strategy

Rank distribution (W)

maximize qi

s . t . , W . quantile(qi) ≤
∑i

j=1 Bj

|W |

How to translate the algorithm to the online case?

How to monitor the rank distribution?

How to adapt to buffer dynamism?

How to account for workload shifts?

How to translate the algorithm to the online case?

How to monitor the rank distribution?

Use a sliding window of latest ranks

How to adapt to buffer dynamism?

How to account for workload shifts?

How to translate the algorithm to the online case?

How to monitor the rank distribution?

How to adapt to buffer dynamism?

Use a sliding window of latest ranks

Measure per-packet queue occupancy
W . quantile(r) ≤

∑i
j=1 (Bj − bj)

B

Per-packet

queue occupancy

How to account for workload shifts?

How to translate the algorithm to the online case?

How to monitor the rank distribution?

How to adapt to buffer dynamism?

Use a sliding window of latest ranks

Measure per-packet queue occupancy
W . quantile(r) ≤ α ⋅

∑i
j=1 (Bj − bj)

B

How to account for workload shifts?

Allow a certain amount of bursts

Burst

allowance

tracking

4

Buffer occupancy

41 2 5

2
W . quantile(r) ≤ α ⋅

∑i
j=1 (Bj − bj)

B

PACKS

Quantile Queue occupancy

monitoring

Sliding window

1

11

22

4

5

tracking

4

Buffer occupancy

41 2 5

2

Admission and queue mapping

W . quantile(r) ≤ α ⋅
∑i

j=1 (Bj − bj)

B

Enqueue if:

PACKS

Quantile Queue occupancy

monitoring

Sliding window

1

11

22

4

5

Scan top-down

Packet-level simulation (NetBench)

Hardware evaluation (Intel Tofino2)

Bandwidth allocation across priorities

We evaluated PACKS on hardware and simulations

Performance in approximating PIFO

Sensitivity to configuration parameters

Practicality under pFabric and FQ scenarios

Heuristic analysis (MetaOpt)

Adversarial workload analysis

PACKS reduces packet drops by up to 60%

compared to SP-PIFO

0

25k

50k

75k

100k

125k

150k

0 25 50 75 100

FIFO
SP-PIFO
PACKS
PIFO

N
um

be
ro
fI
nv
er
si
on
s

Rank Values

0

25k

50k

75k

100k

125k

150k

0 25 50 75 100

FIFO
SP-PIFO
PACKS
PIFO

N
um

be
ro
fI
nv
er
si
on
s

Rank Values0

25k

50k

75k

100k

125k

150k

0 25 50 75 100

FIFO
SP-PIFO
PACKS
PIFO

N
um

be
ro
fI
nv
er
si
on
s

Rank Values

0

25k

50k

75k

100k

125k

150k

0 25 50 75 100

FIFO
SP-PIFO
PACKS
PIFO

N
um

be
ro
fI
nv
er
si
on
s

Rank Values

0

20k

40k

60k

80k

0 25 50 75 100

FIFO
AIFO

SP-PIFO
PACKS
PIFO

N
um

be
ro
fD

ro
ps

Rank Values

0

20k

40k

60k

80k

0 25 50 75 100

N
um

be
ro
fD

ro
ps

Rank Values
0 25 50 75 100

40k

 80k

20k

60k

0

Number of drops

Rank values

FIFO

SP-PIFO

PACKS

PIFO

AIFO

0

30k

60k

90k

120k

0 25 50 75 100

N
um

be
ro
fI
nv
er
si
on
s

Rank Values

0

25k

50k

75k

100k

125k

150k

0 25 50 75 100

FIFO
SP-PIFO
PACKS
PIFO

N
um

be
ro
fI
nv
er
si
on
s

Rank Values

0

25k

50k

75k

100k

125k

150k

0 25 50 75 100

FIFO
SP-PIFO
PACKS
PIFO

N
um

be
ro
fI
nv
er
si
on
s

Rank Values0

25k

50k

75k

100k

125k

150k

0 25 50 75 100

FIFO
SP-PIFO
PACKS
PIFO

N
um

be
ro
fI
nv
er
si
on
s

Rank Values

0

25k

50k

75k

100k

125k

150k

0 25 50 75 100

FIFO
SP-PIFO
PACKS
PIFO

N
um

be
ro
fI
nv
er
si
on
s

Rank Values

0

20k

40k

60k

80k

0 25 50 75 100

FIFO
AIFO

SP-PIFO
PACKS
PIFO

N
um

be
ro
fD

ro
ps

Rank Values

0 25 50 75 100

60k

 120k

30k

90k

0

Number of inversions

Rank values

FIFO

SP-PIFO

PACKS

PIFO

AIFO

PACKS reduces inversions by up to 7x and 15x

compared to SP-PIFO and AIFO

 0

 2

 4

 6

 8

 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

FIFO
AIFO

SP-PIFO
PACKS

PIFO
 0

 2

 4

 6

 8

 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

FIFO
AIFO

SP-PIFO
PACKS

PIFO
 0

 2

 4

 6

 8

 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fl

ow
 C

om
pl

et
io

n
Ti

m
e

(m
s)

Load

FIFO
AIFO

SP-PIFO
PACKS

PIFO

 0

 2

 4

 6

 8

 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

FIFO
AIFO

SP-PIFO
PACKS

PIFO

 0

 2

 4

 6

 8

 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

FIFO
AIFO

SP-PIFO
PACKS

PIFO

0 20 40 60 80

4

2

6

0

Flow Completion Time (ms)

Load (%)

FIFO

SP-PIFO

PACKS

PIFO

AIFO

PACKS reduces mean FCTs by up to 33% and 2.6x

compared to SP-PIFO and AIFO

0

2

4

6

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

C
om

pl
et
io
n
Ti
m
e
(m
s)

Load

PACKS approximates PIFO’s admission and scheduling behaviors

at line rate, on existing programmable switches

PACKS adapts to traffic workloads in real time

using a sliding window and queue-aware policies

PACKS outperforms existing approaches

reducing drops, inversions, and flow completion times

github.com/nsg-ethz/packs

Everything Matters in Programmable Packet Scheduling

http://github.com/nsg-ethz/packs

