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Link loads are a key indicator for network performance.
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Recent systems find worst-case link loads under failures.

QARC [1] or Yu [2]

traffic matrices

õ
# failures

2
p

[1] Kausik Subramanian et al. “Detecting network load violations for distributed control planes”. In: ACM SIGPLAN. 2020
[2] Ruihan Li et al. “A General and Efficient Approach to Verifying Traffic Load Properties under Arbitrary k Failures”. In: ACM SIGCOMM. 2024

Find worst-case loads under arbitrary failures.

W Traffic also depends on BGP routing inputs.
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Ignoring routing changes leads to underestimating worst-case loads.
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The space of failures and route changes is huge and difficult to navigate.

õ

☼
traffic matrices

õ
# failures

2
# BGP changes

10
p

• A destination can be advertised by
any subset of BGP neighbors.

• Failures create dependencies between destinations.

• Over one million of destination prefixes.
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Velo: Verify maximum link loads under failures and routing changes

☼ õ

Search space reduction:

A single egress router
maximizes link loads.

Input size reduction:

Cluster destination with
similar traffic patterns.
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Idea: Consider each failure separately.

• In a given failure scenario,
worst-case states for destinations are independently.
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Nodes forwarding traffic via u–v choose the same route as v.
Traffic on u–v cannot decrease when removing egresses not used by v.
Hence, worst-case load is achieved with a single egress.
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Nodes forwarding traffic via u–v choose the same route as v.
Traffic on u–v cannot decrease when removing egresses not used by v.
Hence, worst-case load is achieved with a single egress.

W Repeat for all 1M prefixes.

u v
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Velo: Verify maximum link loads under failures and routing changes

☼ õ

Search space reduction:

A single egress router
maximizes link loads.

Input size reduction:

Cluster destination with
similar traffic patterns.
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We can “combine” traffic for destinations with similar distributions.Bg
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A =

modified K-means clustering
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Velo approximates the traffic matrix by clustering destinations.
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Velo: Verify maximum link loads under failures and routing changes

☼ õ

Search space reduction:

A single egress router
maximizes link loads.

Input size reduction:

Cluster destination with
similar traffic patterns.
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Velo finds the worst-case loads in 3 hours for all 1790 links in an ISP.
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Velo achieves high accuracy with just 300 clusters.

approximation error δ
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Open problems and next steps.

Some destinations have more stable routes than others.

⇒ Can we use probabilistic techniques as well?

Ingress traffic is not constant.

⇒ Can we reason about traffic shifts as well?



13

Open problems and next steps.

Some destinations have more stable routes than others.

⇒ Can we use probabilistic techniques as well?

Ingress traffic is not constant.

⇒ Can we reason about traffic shifts as well?



Velo: Verifying maximum link loads in a changing world

Given a network, its configuration, and a traffic matrix,
Velo finds the worst-case load of all links

under routing changes and failures.

☼ õ
Search space reduction:

A single egress router
maximizes link loads.

Input size reduction:

Cluster destination with
similar traffic patterns.


