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Abstract

In this thesis we attempt to utilise large language models (LLMs) to answer networking questions
based on router configurations. We establish an approach to ask these questions and evaluate them
on the November 2023 preview of OpenAI’s GPT-4 Turbo specifically. Our findings suggest that
this LLM performs with varying reliability and requires careful question formulations as well as
extensive context to answer correctly.
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Chapter 1

Introduction

1.1 Motivation

At the beginning of 2023, we have observed a rise in popularity [4] of large language models due to
their impressive text generation capabilities [2][15]. In particular, GPT-3 can generate human-like
text to the point of being indistinguishable from real humans in some circumstances[2]. In the
context of networking and network learning, one question arose naturally: How capable are such
language models of understanding and configuring internet networks? Could we let these machine
learning models generate router and network configurations for us? The very first step toward this
goal is to understand these models’ ability to understand a given network, for example based on a
set of configurations of connected routers.

1.2 Task and Goals

Based on these motivations, the central question of the thesis has become: How well do large lan-
guage models understand networks and network interactions based on a set of router configurations?

In order to obtain an answer to this question, we devised the following:

� A set of questions to let the model deduce network interactions information from configura-
tions

� An approach to evaluate the responses from the model to the questions

� Automation processes to obtain a large dataset to make meaningful conclusions about the
aforementioned ability

1.3 Overview

In Section 2, we provide background information on large language models and the Communication
Networks’ routing project [8]. They are central elements that the thesis relies on. Next, we explain
conditions, rules, and considerations for the experiment design in Section 3. They are then used to
set up the experiment in Section 4. Its results are generated and evaluated in Section 5. Lastly we
summarize our insight and present ideas for the future in Sections 6.
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Chapter 2

Background

2.1 Large language models

A Large language model (LLMs) is a type of machine learning model trained to process and produce
natural language. These models are fed large amounts of text, e.g., from articles, papers, forums,
etc. for training. They can be used as chatbots, where the user says or asks something in a prompt
and the LLM processes the prompt and responds to it in natural language. This response by the
LLM is referred to as a completion.

In November 2022, OpenAI released their (at the time) flagship model GPT-3 [2] in the form of
the free-to-use chatbot ChatGPT. Its outstanding capabilities to produce natural language and
the ability to consider the previous prompts and responses for its next response have made it very
popular. Following that popularity, competing LLMs and user facing applications, such as Google’s
Bard [7] and Meta’s Llama [16], have emerged in the subsequent months. At the time of writing,
OpenAI’s latest models are GPT-4 for end users and GPT-4 Turbo in preview for developers.

One way in which LLMs are often used is the generation of code and configuration snippets. When
provided with a natural language description of some function in a specified programming language,
LLMs like GPT-3 can generate said function with varying degrees of accuracy [3]. Despite not
achieving total accuracy, they can still provide value to developers in the form of skeletons that can
be adapted to the code. In this spirit, GitHub released GitHub Copilot [10], which is powered by a
modified version of GPT-3 and can autocomplete code from natural language instructions. Because
configurations can be relatively similar to code, it does not seem far off for LLMs to generate those
as well. As the focus of this thesis is on the understanding of networks, the ability for LLMs to
understand configurations of networking devices is critical.

The amount of information processed is usually measured in tokens. Generally, more words corre-
spond to more tokens. But not every character corresponds to a token. It can correspond to single
characters for less common words up to entire words.

2.1.1 GPT

OpenAI’s Generative Pretrained Transformer (GPT) models have been highly influential in bringing
LLMs to the mainstream [4]. And because we mainly evaluate GPT models in this thesis, it makes

2



2.2. ROUTING PROJECT 3

sense to explain some details of GPT that are used in the experiment design of the in Section 3.

The first model to gain widespread popularity was GPT-3. Its capabilities to write human-like text
have garnered considerable attention from the mainstream media [4]. It shows strong performance
in many natural language processing (NLP) tasks [2].

The successor is GPT-4. It is estimated to have six times the amount of parameters compared to
GPT-3.5 [1].

The latest iteration is the preview of GPT-4 Turbo, released in November 2023 [11]. Its prices are
currently half to a third of GPT-4’s prices.

We interact with GPT using OpenAI’s API by inserting our prompt in a JSON-object that has
multiple values. The relevant value for this thesis is the role. It determines who is writing. The
main values used in the thesis are user for us as the user and assistant, where the LLM places
its completion.

Costs of calling the API are determined by token consumption. GPT-4 costs $0.03 per 1000 input
tokens and $0.06 per 1000 output tokens (i.e. the text it generates) [12]. Compared to that, GPT-4
Turbo costs $0.01 and $0.02 for the same amount of tokens respectively.

2.2 Routing Project

One part of the course Communication Networks [8] is the routing project, in which groups of
students get to set up and operate autonomous systems (ASes) to make up a greater mini-internet.
Students start off with a template VM and have to complete a list of tasks, which guide through
the various steps of setting up an AS for the given topology in figure 2.1. This includes the
setup of direct connections between routers and hosts all the way up to configuring BGP business
relationships with neighbouring student operated ASes. Tasks are completed by entering commands
into the various routers’ and hosts’ prompts. The routers run a software called FRRouting [5].

The following gives a rundown of the structure, to better understand the design of the experiments.

2.2.1 Structure of the networks

The routing project is a small-scale “internet”, where multiple student-managed ASes are connected
to each other. Each AS has a fixed structure, as shown in Figure 2.1. They consist of eight routers
named BERN, BASE, GENE, etc. Internally, the routers constitute a network running the Open
Shortest Path First (OSPF) algorithm. Six of the routers are border routers, which are supposed
to connect to border routers of neighbouring ASes or internet exchange points (IXPs) via BGP.
These neighbours are at fixed points; Customers of an AS are connected at the bottom two border
routers, providers at the top two, and peer and exchange points at GENE and STGA respectively.

2.2.2 Task list

The students work through the following set of tasks:

1. Establish host-router connections

2. Configure OSPF and load balancing for paths between ZURI and LUGA
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Figure 2.1: Graph showing the topology of an individual AS.

3. Configure IPv6 tunnel between ZURI and LUGA

4. Configure internal BGP (iBGP) full mesh

5. Establish BGP sessions with the neighbours as given by the topology

6. Configure basic no-transit policies for the business relationships using route maps

7. Configure BGP session with connected IXP

8. Optimize established business relationships by setting preferred customer/provider

9. Enable Resource Public Key Infrastructure (RPKI) as a security measure



Chapter 3

Design

Our goal is to determine an LLM’s ability to answer increasingly complex networking questions.
For that, we need a set of questions for the LLM to answer, evaluation metrics for each question,
and an automation around them, as described in Section 1. Let us dive a bit deeper into each of
these aspects.

3.1 Questions

The questions for the LLM are the main part of this thesis, as its answers determine its ability to
reason about networks. Therefore, we need to consider in great detail many factors when creating
the questions. First, we set critical conditions to always consider when looking at other factors.
We next examine the effects of a question’s formulation on the answer’s quality. Here, we further
establish the additional information required for each question. At the end of this section, we
become more concrete about the expected answer types from a question and the question topics.

3.1.1 Initial considerations

The answers to our questions should fulfil two conditions: Correctness, but more importantly for
this thesis, parsability. With parsability, we can properly evaluate the answer for correctness in the
first place. The LLM’s completion might contain additional text around the actual answer to a
question, making it potentially difficult to find. Moreover, the response might be in an unforeseen
format that cannot be appropriately extracted, and therefore it cannot be meaningfully utilized.
Due to these factors, we require the LLM to respond in a well-defined format at a specific place,
for example at the end or within the text separated by newlines. This way, we can properly extract
answers and batch process them for e.g. evaluation or grading.

Further, a question’s formulation directly influences the quality of an answer. For example, a
question might be formulated more naturally or more precisely. The more naturally a question is
formulated, the more likely it becomes ambiguous. By contrast, questions with excessive informa-
tion leave little room for the LLM to reason by itself. This would undermine the intended objective
of assessing the LLM’s capabilities.

We may also include an example scenario in the question. It could potentially improve the answer
in some ways, but also hurt it in others. On one hand, an unrelated example with a properly

5
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formatted answer could guide the LLM in the right direction. The LLM could directly learn from
and emulate the example answer, yielding more consistent formatted answers. On the other hand,
we may accidentally provide excessive information. The LLM would then consistently answer
correctly for the same scenario, i.e. the routing project setup in our case. In a different scenario
however, it would potentially neglect information outside what was used in the example. If a factor
outside the example influences the answer in the real scenario, it might be ignored. Furthermore,
the LLM may be inspired to not write down its reasoning before answering, since the example
answer would only consist of said answer. OpenAI’s prompt engineering guide [13] suggests for
GPT that “giving time to think” improves answer quality.

To summarize, for each question we should have the following information:

� The question itself

� A required format (answer type)

� Optional example set with example data and answer

3.1.2 Answer type

For each question we set one of two answer types: Yes-no answers and custom answer formats.
This depends on the type of information we want to retrieve. Each answer type has a different
purpose and different advantages.

Yes-no answer type questions are predictable and can be easily evaluated, but they lack diversity.
Questions with this answer type are about whether a set of conditions holds. Some use cases
include: Whether two neighbouring routers have properly set up each other’s interfaces or whether
a certain AS filters out invalid RPKI routes properly. So it is useful to ask questions reduced to
a minimal amount of information. It does mean however that we primarily test its knowledge and
ability to check for certain conditions. The LLM’s ability to intelligently combine and reorganize
information is tested only to a certain extent.

Custom answer formats are more flexible in what questions the can accompany. They complement
open-ended questions well with many more possible answers. Examples include seeking the most
optimal answer for some scenario, e.g. the best network path or a preferred neighbour. We can
also ask it to list multiple things for an answer.

The answer type is requested by a format instruction. Its formulation may also influence the result
as it is part of the prompt after the question. We may experiment with different instructions; They
may or may not contain smaller examples. These are distinguished from the previously mentioned
example scenarios. Here, we do not provide example data in the form of fictional data. Instead, at
most we describe a scenario in natural language, e.g., “For example, if the answer is X, format it
like this:...” Compared to the previously mentioned full scenarios, we expect the answer quality to
be less influenced.

3.1.3 Question topics

The last factor before building a question set is the questions’ content. We distinguish between
pure configuration extraction and network interaction. Configuration extraction questions give an
idea about the LLMs basic understanding of the given language and syntax. However, interactions
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in a network, e.g. between routers and ASes, are the main area of interest. Let us describe these
in more detail.

Basic configuration extraction

Configuration extraction questions give a partial idea about the LLM’s knowledge on networking,
the configuration language, and the ability to follow format instructions. First, they partially test its
knowledge on networking concepts and protocols. For example, it should know what an IP address
or an AS number is and return the values if demanded in natural language. Mostly however, they
test the LLM’s understanding of the given configuration language and its syntax. As an example
from FRRouting, it should know that the syntax neighbor ip route-map NAME under the
router bgp configuration means that the neighbors of this IP are filtered by a route map called
NAME. Lastly, as these questions are less complex, we can see how well it follows the instruction
format. Inconsistencies in this area violate the parsability requirement. So these questions let us
experiment to achieve consistently formatted answers.

Network interaction

Ultimately, we want to know how well the LLM understands interactions between routers and
between ASes. The main bulk of the questions should therefore cover these interactions. Networking
is characterized by the interactions within and between networks. As such, questions covering them
give a more substantive idea about its understanding. There are naturally more possibilities for
open-ended questions here.

3.2 Prompting modes

As we established in Section 3.1.1, for each question we demand a format instruction and optionally
an example set. The next step is to arrange these pieces of information into a prompt for the LLM.
Similar to the question’s formulation, the way the information is arranged may affect the answer’s
quality. Therefore, it makes sense to explore different arrangements and their effects on the answer.
We refer to these arrangements as different prompting modes.

We present four different prompting modes: Default, simulated conversation, split up question and
format instructions, and a simple feedback loop. Each of these modes tests out a different prompt
engineering technique.

Default prompting mode

In this base mode, we provide the LLM with the necessary configurations and directly ask the
question with a format instruction. We provide the LLM with all the necessary information at
once. This is the simplest case.

user: Provide (set of) configuration(s), question, and format instructions

assistant: Provides final answer

Simulated conversation

In this mode, we aim to make the completions and the answer formats more consistent by feeding
the LLM an example scenario first. By feeding our own example scenario, including an example
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answer, the LLM should know how to answer the question for the real data. We start by providing
example data and the question in our first user prompt. Then for the example answer, we make
GPT “think” that it answered the question correctly. This is achieved by inserting our answer
into the assistant’s message, which normally contains the LLM’s completion. The OpenAI
documentation [14] clearly suggests this use case. Lastly, we acknowledge the example answer as
correct, provide the real scenario, and ask the question again. The LLM should consider “its”
previous answer that we approved, and respond similarly. The result should be more consistent
completions with properly formatted answers.

user: Provide example scenario with example data, ask question

assistant: Example answer inserted by us

user: Affirm the example answer as correct, provide the real data, and ask again to answer

assistant: Provides final answer

Split up question and format instructions

The idea of this mode is to let GPT reason about a question freely without format constraints first.
In the default mode, the LLM would have to provide the properly formatted answer within the same
prompt. But GPT might make more mistakes if it has to answer a question immediately as the
documentation’s prompt engineering guide suggests [13]. Therefore, we ask the question without
any format instructions and let GPT work out its reasoning and response. Then in a second step
we ask to summarize its findings from the first completion in the desired answer format.

user: Provide data and question, without format instructions

assistant: Reasons and answers in its own way

user: Ask to summarize in format

assistant: Provides final answer

Simple automatic feedback loop

Inspired by Verified Prompt Programming in [9], we test here the LLMs ability to revise a wrong
answer with simple feedback. This is to address the situation where the LLM oversees information
in its initial answer. By prompting it to review it, it might realize what it missed and revise its
answer accordingly. We request a new answer to a question, if the current one does not meet our
requirements. We continue requesting new answers, until they either meet our requirements or
until the hard limit for requests is reached. In the best case, the conversation ends before the loop
even starts, which would correspond to the default case.

We distinguish between two different mistakes: Incorrect answer or incorrect format. An incorrect
answer is acceptable to a certain extent. In this case, we can draw the conclusion that the LLM’s
performance at answering a particular question is insufficient. However, we cannot use an incor-
rectly formatted answer further. It cannot be processed by programs and thus cannot be evaluated
for correctness. We could only comment the LLM’s inability to fully follow instructions, regardless
of how well it reasons about that question.
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The final score is the score of the last answer, disregarding potentially better previous answers
during the loop.

user: Data + question, prompt identical to default mode

assistant: Answers in wrong format

user: Ask it to abide by the format requirement

assistant: Answers in correct format, but wrong content wise

user: Ask it to reconsider the information and try to answer again

. . .

3.3 Scoring

We must now devise a method to evaluate the LLM’s answers. For this purpose we introduce a
score. It is either a decimal number between 0 and 1 or the number -1 for improper formatting.
However, since the decision on the improper formatting was made late in the process, most of the
experiments will not contain this score. Since each question is different, it is logical to create a
complementing scoring function for each question. We then return both the score and solution to
compare to the given answer.

Each scoring function grades a completion with a score. First, it receives the completion and the
data for the solution as input. Then it does three things: Extract the answer from the completion,
compute the solution from the data, and compute the score by comparing answer and solution.
The closer the answer is to the solution, the closer the score should be to 1, which would be fully
correct. Inversely, an incorrect answer receives a score of 0. If no answer can be extracted according
to specification, it means the answer format was not respected, resulting in a score of -1.

A yes-no answer can be readily extracted. The scoring becomes (mostly) binary as well, with the
answer either matching (score 1) or not matching the solution (score 0). And if there is no “yes”
or “no”, then the format was not respected, resulting in a score of -1.

For a custom format answer, the difficulty of extraction fully depends on the question and the type
of information we want to extract. That makes the computation of the score itself slightly more
challenging. We settled for a simple conversion to a Python set and a comparison of the solution
and answer sets, scoring by how close the answer set is to the solution set. For example, if the
answer comes as a list of multiple items, we would need to handle different orders as equivalent.
We achieve this by splitting the list into elements of a set. A Python set is unordered, i.e., there
is no order of elements. Different orders of the correct answers would therefore match the solution
equally.

3.4 Use of the routing project

As the final part of our design considerations, we determine the scenario to base our questions
around and the data set to ask the questions on. The Communication Networks’ routing project is
suitable for this task. It manages to be sufficiently small in scale and be relatively comprehensive
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at the same time. It guides through setting up various parts of an autonomous system, including
interactions with different ASes.

We base our questions around the routing project’s tasks. As the task list covers many aspects,
it presents itself as a suitable base for questions. With the previous considerations in mind, we
reformulate the task into viable questions for the LLM.

As alluded to in Section 2, each group operates one AS consisting of eight routers. The main
part is the configuration of the routers according to the tasks. In the end, each of these routers’
configurations is collected and graded. These batches of eight submitted configurations make up the
data for our operations. In other words, the LLM should extract answers from these configurations
as well as deduce network interactions based on them.

3.5 Question catalogue

Taking the routing project’s tasks as basis, we create our catalogue of questions’ contents, i.e. what
we expect to obtain from each question. Our result is the Table 3.1. The concrete formulations of
each question and format requirements are in Section 4.

We have ignored the host-router connections since our main focus is the interactions between routers.
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Project task LLM question content

(Configuration extraction)

1. Return IP prefix in desired format
2. Return AS location of current router
3. List configured interfaces
4. List configured interfaces with IPv6

Establish host-router connections

Configure OSPF and load
balancing for paths between
ZURI and LUGA

5. Existence of path between router A and B
6. Shortest path between A and B based on OSPF

Configure IPv6 tunnel between
ZURI and LUGA

Configure internal BGP (iBGP)
full mesh

7. Check iBGP full mesh of our AS
8. Check iBGP all neighbours configured for router X
9. List missing iBGP links in the entire AS
10. List missing links to iBGP neighbours for single router

Establish BGP sessions with the
neighbours as given by the topol-
ogy

Configure basic no-transit policies
for the business relationships using
route maps

Configure BGP session with con-
nected IXP

Optimize established business
relationships by setting preferred
customer/provider

11. Pick neighbour (customer or provider) that our AS prefers to
receive traffic from
12. List all routed advertisements through our AS from neighbour
X to other neighbours
13. List allowed transit paths from customers to providers or vice
versa

Enable Resource Public Key In-
frastructure (RPKI) as a security
measure

14. Check if routes with invalid RPKI value are blocked

Table 3.1: Converting the routing project’s task list to questions for the LLM



Chapter 4

Implementation

We now describe the concrete set of questions and how they are tested in the experiment framework.
The set of questions is based on the routing project’s tasks and will be tested out on certain student
groups’ configuration sets.

4.1 Concrete question catalogue

The Tables 4.1 and 4.2 show the configuration extraction and network interaction questions respec-
tively. Additionally, an answer example is given in the fourth column. Each question or question
group is explained by its concrete occurrence in the routing project, including relevant FRRouting
configuration lines, and the process of formulating them.

We arrived at each of these formulations through iterative experimentation and continuous adjust-
ments within the GPT playground environment. The objective is to run each of these questions
through the experiment runner described in Section 4.2 and evaluate their performance on a larger
scale. Multiple runs of the same questions will give us an idea on the consistency of GPT’s perfor-
mance.

To simplify the explanation, we assume we are setting up our own AS, as if we participated in
the routing project ourselves. Therefore, we often use terms such as our AS and our customer-
s/providers. In the question formulations, the current / “our” AS is declared by its number explic-
itly, when needed.

4.1.1 Basic configuration extraction

Table 4.1 contains the questions to test its basic knowledge about FRRouting and the ability to
respond in format. Basic networking knowledge is covered by the FRRouting testing. Since we are
mainly interested in syntax processing here, configurations of single routers suffice for testing these
questions.

The first two questions are not part of the routing project explicitly. Question 1 asks GPT to
return the AS number based on a single router’s configuration. Question 2 is to return the prefix
advertised by the AS. Answers for both are found in an FRRouting configuration on the lines listed

12
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ID Objective Question Example answer

1 Return IP prefix in de-
sired format

What IP prefix does this router’s AS advertise? 19.0.0.0/8

2 Return AS location of
current router

In what AS is this router located? 19

3 List configured inter-
faces

What devices are directly connected to our current
router?

lo :
63.153.0.1/24

4 List configured inter-
faces with IPv6

List all the ipv6 connections that this router has. ZURI-L2.10 :
28:200:10::3/48

Table 4.1: Concrete formulations for each extraction question.

router bgp 63
...
!
address-family ipv4 unicast
network 63.0.0.0/8
...

exit-address-family
exit

Listing 4.1: BGP configuration lines relevant for retrieving AS number and advertised prefix in
FRRouting.

in Listing 4.1. Based on it, GPT should format answers as 63 and 63.0.0.0/8 for the AS number
retrieval and advertised prefix question respectively.

Next, we take look at question 3. In the routing project, students need to set up all directly
connected interfaces and the loopback interface lo. The relevant configurations are structured as in
Listing 4.2. Question 4 is simply a variation of this question for IPv6 interfaces specifically. An IPv6
address is declared with ipv6 address {IPv6 address with prefix} in the interface
configuration. GPT’s task in both is to parse the interface configurations and return the answer
in the desired format.

4.1.2 Network interaction

Table 4.2 contains every network interaction question. It is split in three parts: OSPF-, iBGP-,
and routing policy-related questions.

interface NAME
ip address {ip address}

exit

Listing 4.2: Basic FRRouting structure for an interface configuration.
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ID Topic Question Example answer

OSPF

5 Existence of path be-
tween router A and B

Does a path from router {A} to router {B} exist? Yes or No

6 Shortest path between A
and B based on OSPF

What are the shortest OSPF paths between {A} and {B}?
Unless specified, the default OSPF weight is 10.

ZURI -> BASE ->
GENE

iBGP

7 Check iBGP full-mesh of
our AS

These routers comprise one entire AS. Considering that, does
this AS have a full iBGP mesh configured?

Yes or No

8 Check iBGP all neigh-
bours configured for
router X

These routers comprise one entire AS. Considering that, has
router {router} configured all its bgp neighbors properly?

Yes or No

9 List missing iBGP links
in the entire AS

These routers comprise one entire AS. Considering that, has
every router configured their bgp neighbors properly? List all
the missing bgp sessions, if there are any.

ZURI -> LAUS or
None

10 List missing iBGP links
for a single router

These routers comprise one entire AS. Considering that, does
router {router} have any bgp neighbor missing?

ZURI -> LAUS or
None

Routing policy

11 Pick neighbour (cus-
tomer or provider) that
our AS prefers to receive
traffic from

Here are the routers of the entire autonomous system
{this as}. AS {this as} is the provider of AS {cust 1} and
AS {cust 2}. To which customer is AS {this as} advertising
a more desirable route?

AS 19

12 List all routed advertise-
ments through our AS
from neighbour X to
other neighbours

These routers make up the entirety of AS {this as}. To
which neighboring ASes does AS {this as} propagate AS
{neighbor as}’s advertisements?

19 -> 15 or None

13 List allowed transit
paths from customers to
providers or vice versa

These routers make up the entirety of AS {this as}. On
one side, we have the ASes {neigh 3} and {neigh 4}. On
the other side, we have the ASes {neigh 1} and {neigh 2}.
Between them sits AS {this as}. To which of the ASes
{neigh 3}/{neigh 4} does AS {this as} route advertisements
from AS {neigh 1}/{neigh 2}?

19 -> 15 or None

14 RPKI: Check if
invalid routes are
blocked

These routers comprise one entire AS. Considering that, does
this AS accept incoming routers with an ‘invalid‘ RPKI value?

Yes or No

Table 4.2: Concrete formulations for each network interaction question, grouped by topic.

4.1.3 OSPF

The first part of network interaction is internal. Open Shortest Path First (OSPF) is the internal
gateway protocol (IGP) used in the routing project. It uses standard graph algorithms to determine
the shortest path from A to B. The graph of our AS topology is directional, i.e. path weights can
be configured in each direction.

Question 5 concerns the basic OSPF setup. The setup involves declaring each connected interface
by their subnets listed in Listing 4.3. This includes setting the current router’s loopback subnet as
a network entry and its concrete address in ospf router-id.

Thus, to check whether OSPF has been set up properly, checking the existence of a path between
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router ospf
ospf router-id 63.151.0.1
...
network 63.0.2.0/24 area 0
...

exit

Listing 4.3: OSPF configuration in FRRouting.

interface NAME
ip address {ip address}
ip ospf cost {number}

exit

Listing 4.4: Adding OSPF link costs for a certain connecting interface in FRRouting.

any arbitrary routers A and B in the AS suffices. We decided to first formulate it as a yes-no
question. For the solution in the routing project, this question should always be answered with yes.

In the routing project, the next step for students is to make sure that only the following paths are
load balanced (in both directions):

� ZURI - BERN - LAUS - LUGA

� ZURI - LUCE - LUGA

This must be done by changing OSPF weights or costs on certain links. In FRRouting, one
changes link weights by adding ip ospf cost {number} to an interface as seen in Listing 4.4.
In FRRouting, the software used in the routing project, each link has an OSPF weight of 10 by
default.

Question 6 attempts to check the fastest paths for arbitrary routers A and B. For A=ZURI and
B=LUGA (and vice-versa), the answer should naturally be the two paths mentioned above. The
answer format is the names of the routers on the path (including A and B), separated by spaces and
dashes. Here is an example: ZURI - BERN - LAUS - LUGA. Hence, the formatted answer for
ZURI - LUGA should be the previously mentioned two allowed paths (without the bullet points).

4.1.4 iBGP

A full-mesh in an AS’ internal BGP configuration is advisable in many situations; Otherwise, routes
may not be propagated to neighbours properly. As such, the routing project requires setting up a
full-mesh between the eight routers. The procedure for each router is:

� to add the internal neighbours’ loopback address as a BGP neighbour with the same AS
number
(neighbor {neighbour’s loopback} remote-as {internal AS number}),

� to advertise the current router’s loopback as the source address
(neighbor {neighbour’s loopback} update-source lo,
assuming lo is the configured loopback interface),
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� and to configure next-hop-self on border routers

The task of GPT is then to learn each router’s loopback IP address and check whether the above
are present for each neighbour in each router. In the routing project, the above commands would
thus appear seven times in each router’s BGP configuration, as each of the eight routers has seven
internal neighbours.

While experimenting in the GPT playground, we tried asking the yes-no question whether our AS
has configured the iBGP full-mesh properly. This question has been more difficult for GPT than
anticipated. Hence, it made sense to dive deeper and arrive at four questions here.

Both answer types are used: The first one, as discussed previously, is a yes-no question, simply
checking whether a full-mesh has been configured properly. The second answer type is to list every
missing link in a given format. For example, if router ZURI did not configure its session with router
LAUS, then GPT should print ZURI -> LAUS. Otherwise, it should indicate a full and proper
configuration with None. Additionally, each question is posed for the entire AS and each router
individually, resulting in four questions.

4.1.5 Routing policy

After the setup of BGP and business relationships, optimization of the policy configuration rep-
resents a large part of the routing project. Considering its complexity and consequences, it
makes further sense to dedicate additional effort in this part. During experimentation, it be-
came promptly clear that due to that complexity, some routing project specific information has to
be explained to GPT in the question. As a result, most formulated and tested questions imply the
customer/provider/peer structure.

The routing project policies should be as follows:

� Prefer the low latency customer and provider for both outbound and inbound traffic

� Block unprofitable transit paths

Let us focus on the first policy. It requires setting values such as localpref for outbound traffic
and AS path prepending or multi exit discriminator (MED) values for inbound traffic. They are set
in the route maps. Route maps are declared and applied to neighbours as illustrated in Listing 4.5.

In question 11, we handle the outgoing advertisements case. The goal for GPT is to identify route-
maps applied with the out keyword. Then it would find the AS path prepending and MED values
to pick the better customer or provider. This question in particular was heavily impacted by the
formulation. The initial formulation was (for the customer case): “Which customer does our AS
prefer to get traffic from?”

GPT’s answer was structured as seen in Listing 4.6. It did manage to output the correct answer
in the correct format immediately. However, it understood it as an outbound question, arguing
with the outbound route maps. With numerous subsequent formulations, it generally fell back
to arguing with outbound route maps. In the end, the question seems to have been posed too
naturally. The final reformulation to “To which customer is our AS advertising a more desirable
route?” has brought more consistent results. Only with this precise formulation does GPT realize
which information it has to work with.
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...
router bgp 48
neighbor ...
...
!
address-family ipv4 unicast
network 48.0.0.0/8
...
neighbor 12.34.56.78 route-map receive_ads in
neighbor 12.34.56.78 route-map propagate_ads out

exit-address-family
exit
!
...
route-map receive_ads permit 10
set local-preference 500

exit
!
route-map propagate_ads permit 10
set as-path prepend 48 48

exit
!
...

Listing 4.5: Creating and applying route maps in FRRouting. The keyword permit filters routes
matching these conditions as allowed. All other routes are implicitly denied.

AS {our AS} prefers to get traffic from the customer with the highest local preference
set in the BGP configuration. Local preference is a BGP attribute that determines

the preferred exit path for traffic leaving an autonomous system.

From the provided configurations, we can see that router LAUS (AS {our AS}) has set a
local-preference of 300 for routes received from its customer AS {our customer 1}:

route-map {outbound traffic}
...

Similarly, router LUGA (AS {our AS}) has set a local-preference of 301 for routes
received from its customer AS {our customer 2}:

route-map {outbound traffic}
...
...

Final answer:
AS {our customer 2}

Listing 4.6: Sample answer for question 11 (early formulation). The answer is correct, but the
reasoning is wrong.
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# Route map at border router with peer, receiving from peer
route-map receive_adverts permit 10
set local-preference...
set community 58:1
....

exit
...
# Route map at border router with provider, propagating to provider
route-map propagate_adverts deny 10
match community 58:1

exit

Listing 4.7: Usage of community values. In this example, routes originating at the peer will not be
propagated to the provider due to the deny keyword.

Due to time constraints, the outbound traffic version of this question was left out.

Questions 12 and 13 concern the no-transit policies. In the routing project (and in general), the
transit paths should abide by the Gao-Rexford conditions [6] and only allow financially profitable
paths. For example, allowing transit from a peer to a provider would make our AS lose money; Our
AS would have no costs on the peer connection, but it would have to pay the provider to forward
traffic, resulting in an overall loss. In contrast, in the transit from customer to provider, our AS
would still pay our provider to forward traffic, but it would generate revenue from receiving the
customer’s traffic.

By the Gao-Rexford conditions, the following paths should be blocked:

� peer → provider

� provider → peer

� peer → peer

Such transit policies are configured by a route map’s permit or deny keywords and community
values. In Listing 4.5, there are only permit route maps. This can be enough as all routes
not allowed by a permit route map are implicitly denied. Community values can be used to tag
routes when passed between routers within our AS. These tags can be matched for in route-maps for
filtering. This can be used to stop routes received from peers from being propagated to providers:
The border router at the peer sets a community value for received routes in a route map. The
router bordering the provider then configures its route maps to not propagate it further. With this,
the provider → peer traffic is blocked. Listing 4.7 shows the configuration in FRRouting.

In question 12, we choose a neighbour and ask which transit paths originating from this neighbour
through our AS are allowed. GPT thus needs to check the right route maps based on community
values. With this information, it will then omit blocked paths, printing only allowed ones. The
format should be neighbour X -> other neighbour, e.g. 56 -> 59 for X = AS 56 and the
other neighbour being AS 59. We decided that it should not print our AS (i.e. not 56 -> 58 ->
59 if our AS is 58), since it is implied.

Question 13 works with the routing project’s structure more closely. The goal is to check whether
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route-map receive_adverts permit 10
match rpki valid

exit

Listing 4.8: Setting RPKI in route maps. The following map allows for all routes with a valid
RPKI value.

{
"question" : "...",
"expected_format" : "...",
"example_data" : "...",
"example_answer" : "..."

}

Listing 4.9: The question object.

the transit between our customers and providers is ensured. We list every such allowed path between
the two “groups” in the same format as in the second policy question.

Lastly, question 14 serves to improve coverage of the routing project’s tasks. We are asking whether
routes with an invalid RPKI value are allowed in the AS. Originally, this question was intended
as a basic configuration extraction question. However, the realization occurred that it requires the
knowledge about all router’s route maps.

RPKI is configured by setting the cache server and match rules in route maps. One can filter routes
based on their rpki values valid, invalid, and notfound. An example is shown in Listing 4.8.

Here we expect GPT to simply check if there is no rpki invalid values in any permit route
map.

4.2 Experiment framework

The following is a brief overview of how the experiments are run. The experiment framework is im-
plemented in distinct parts of Python code. It consists of the question object, scoring functions, the
main experiment runner, experiment functions, and helpers. The question object groups question,
format instructions, and an optional example together. They are complemented by the scoring
functions that compute a solution and use it to evaluate GPT’s answer. Experiment functions
make use of them through the main experiment runner. It itself uses many helpers to concretely
prompt, score, and export the results. Each of the question objects receives a unique identifier,
that are used in the experiment and scoring functions’ names as well. Figure 4.1 visualizes this
code flow.

Questions object

Each question is accompanied by an expected format and optionally an example. We implemented
this in code by the structure listed in listing 4.9. This format facilitates the generation of the
prompt for the LLM.
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Figure 4.1: Diagram of the basic experiment code flow.

Composing the prompt

This object structure is used in the function config create prompt default to generate the
concrete prompts. This generation is performed in two steps: Putting together the relevant con-
figuration snippets and making the prompts according to the mode. The configuration files are
large and make for large prompts. As explained in more detail in 4.2.1, this causes problems.
As such, we collect relevant configuration parts with a configuration extraction helper (called
config extract multi). Then the prompt composing helper (called config create
prompt default) generates the desired prompt. It does not take in any concrete mode. In-
stead, it takes the flags include example and include format. They are used by the main
experiment runner to individually generate prompts by mode.

Now we provide the concrete formulations used in the composition. We illustrate them using the
question: “In what AS is this router located?”. Further, we use the following format instructions:
“List only the AS number. For example, if the router is located in AS 53, your answer should be:
53”

The program would make the following prompts:

Default prompting mode:

user “You will answer questions about the following FRRouting configurations: (Real Data)... In what AS
is this router located? List only the AS number. For example, if the router is located in AS 53, your answer
should be: 53”

assistant Provides final answer
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Split question and format instructions:

user “You will answer questions about the following FRRouting configurations: (Real Data)... In what AS
is this router located?”

assistant Provides intermediate answer

user “Now summarize your findings. List only the AS number. For example, if the router is located in AS
53, your answer should be: 53”

Simulated conversation:

user “You are going to answer questions about FRRouting configurations. Given this example set of config
snippets: (Example data)... In what AS is this router located? List only the AS number. For example, if
the router is located in AS 53, your answer should be: 53”

assistant Our inserted example answer

user “This is correct. Now answer the same question, but for this set of configurations for a network
unrelated to the previous example: (Real Data)... Remember to answer in the same format as before.”

Basic feedback loop:

user “You will answer questions about the following FRRouting configurations: (Real Data)... In what AS
is this router located? List only the AS number. For example, if the router is located in AS 53, your answer
should be: 53”

assistant Provides wrongly formatted answer

user “You got the format wrong. Please summarize your answer in the format requested before.”

assistant Provides correctly formatted, but wrong answer

user “It seems like you didn’t get the answer right. Review the given information again and respond in the
format requested before.”

assistant Provides correct answer

The program inserts exactly each of the non-highlighted parts in this manner.

Scoring functions

Next are the scoring functions. They follow a consistent function signature and structure shown
in listing 4.10. We extract the solution from the configurations and each AS’ grading reports. We
heavily rely on string manipulation here, as there is no easy to use FRRouting parsing library,
meaning we are performing this task manually.

Experiment runner

The main experiment runner (called run experiment multi configs) puts everything to-
gether. It calls the other parts to generate prompts, make API requests, and score the responded
completion. It consists of the main experiment runner and wrapping experiment functions of each
question. The experiment functions of the questions are wrappers around this runner. They access
the data and contain adjustable parameters for each question. This can be used to ask the question
about, for example, a different router or a different neighbouring AS.
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def answer_score(configs_list, completion, args):
# Extract answer from completion
...
answer = find(...,completion,...)
...
# Compute solution from configs_list
...
solution = find(...,configs_list,...)
...
# Bring answer and solution into same python data structure
...
solution_set = set(...,solution_str,...)
answer_set = set(...,answer,...)
...
# Compute solution from degree of overlap
score = overlap(solution_set,answer_set)

return score, solution

Listing 4.10: General structure of each scoring function.

Lastly, using the well-known Python library pandas, we collect all results in a table and export it.
The function for this in the code is called pandas save.

4.2.1 Challenges while implementing

Pricing of the API was an initial concern. It therefore made sense to investigate how to keep costs
low. Each prompt costs a certain amount of input and output tokens. Before the preliminary
release of GPT-4 Turbo, there was only plain GPT-4. Calls to it are quite costly, at $0.03/1000
input tokens and $0.06/1000 output tokens. To get an idea for how expensive this is, we ran a set of
seven early configuration extraction questions on 32 router configurations, i.e. about 224 requests.
In every request we sent the router’s entire configuration and one of the questions. This entire run
cost more than $5 to execute. Thus, it made sense to reduce the tokens per request.

The best way was to reduce the configuration part to a minimum. The extraction question about
listing interfaces did not need any BGP configurations or route maps. In this case, the configuration
part of the prompt was reduced to less than half.

As the field of LLM’s is still emerging, changes to services are bound to happen. OpenAI released
a preview of GPT-4 Turbo in November 2023, improving GPT in various ways. GPT-4 Turbo
accepts a larger amount of context than GPT-4, meaning prompts and history can be larger. It
is reasonable to conduct our testing on the latest LLM, to draw the most current conclusions.
Since we are working with OpenAI’s library, changing the model is a matter of changing a single
parameter. It is possible to compare the different versions side-by-side. However, due to time
constraints, assessing a single model’s performance was the most reasonable course of action.

Rate limitations have proved to be a heavy constraint. Therefore, some code handling rate limit
errors had to be added to run experiments in batches unattended. For a public API with limited
computing power, rate limits are standard practice. In GPT-4 Turbo’s case, that limit has been
tight, as it is still in preview. As of writing, the current daily limit is 500,000 tokens. Batch testing
all the questions multiple times from previous attempts has exhausted this limit rapidly. Using the
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tenacity library, we were able to request the API multiple times unattended.

As the limit was tight, processing all experiments would take a long time. It was therefore reasonable
to leave the code running unattended on a virtual machine.



Chapter 5

Results

We ran the experiment setup discussed in the previous chapter. We specifically used the November
2023 preview of GPT-4 Turbo. Each question was run with various settings and variations as we
saw fit. Each variation was run three times.

We use two groups’ configuration sets. We refer to them as Group 1 and Group 2. Group 1 solved
all tasks in the routing project correctly. Group 2 has erroneously configured their transit policies.
They did not set up transit to their customers from any neighbour and did not prefer their low
delay provider and customer. We test mainly on Group 1’s configurations and additionally on
Group 2 where their configurations contain mistakes, for comparison. Results in the tables are for
Group 1, unless specified.

We shorten the names of prompting modes as such:

Default The default prompting mode with question and format instructions together.

Split Split question and format instructions in two steps

Example Simulated conversation with example data and answer

Feedback Feedback loop if score is too low

GPT has a multitude of custom parameters. However, for this experiment, they are all unmodified.

5.1 Basic configuration extraction

Each question in this category was run in the Default, Split, and Example modes for each of Group
1’s router configurations. With three modes, eight routers, and 3 runs per combination, each
question was run 72 times in some variation, making for 216 total runs.

With these simpler questions, we already see a pattern: Listing a single thing is not problematic
for GPT. However, in question 3, the low scores in the Default mode indicate the need for good
formulations and different approaches to prompting.

24



5.1. BASIC CONFIGURATION EXTRACTION 25

Question 1: Advertised prefix

Question formulation “In what AS is this router located?”

Format instruction “List only the AS number. For example, if the router is located in AS 53, your answer
should be:
53”

GPT always answers this question correctly, but in Default mode, it never follows the format fully;
It always generates a full sentence around it, for example: “The router’s AS (Autonomous System)
advertised IP prefix is (...).0.0.0/8.” With the Split and Example modes, it becomes clear to GPT
that it should leave out any sentence in its final answer.

Mode Average
score

Median
score

Default 0.5 0.5
Split 1.0 1.0
Example 1.0 1.0

Table 5.1: Results for question 1.

Question 2: AS location

Question “In what AS is this router located?”

Format (detailed) “List only the AS number. For example, if the router is located in AS 53, your answer
should be:
53”

We can confidently say that GPT answers this question consistently correctly. It is not very complex
and the instructions are clear. As such, the high score on this question is not unexpected. There
was a single outlier out of the 72 runs where GPT added additional text around the answer number.
Results are shown in Table 5.2.

Mode Average
score

Median
score

Default 0.979 1.0
Split 1.0 1.0
Example 1.0 1.0

Table 5.2: Results for question 2.

Question 3 & 4: List interfaces

Question formulation [IPv4] “What devices are directly connected to our current router?”

Format instruction [IPv4] “List them in a format like this (unrelated example):
lo : 153.34.245.0/17
port WIEN : 91.23.0.21/8”

Question formulation [IPv6] “List all the ipv6 connections that this router has.”
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Format instruction [IPv6] “List them in a format like this (unrelated example):
port ROME : 28:200:20::3/48
port WIEN : 54:100:15::3/48
If there are none, answer with “None”.”

An immediate insight is that the formulation of the IPv4 question is ambiguous, which is obvious in
hindsight. We have not specified in the format instructions explicitly that it should only reply with
IPv4 addresses. In many runs GPT seems to list the interfaces’ IP addresses as the prefixes, as seen
in Figure 5.1. Technically under the utilized formulation, the loopback would not be considered a
“directly connected device”. The data of the Example mode might have overridden the flaw of the
question formulation, seeing the score.

The IPv6 question is quite more precise. It seems to have helped immensely with the score as a
result, next to the fact that only the routers ZURI and LUGA have IPv6 connections.

Question 3: IPv4

Mode Average
score

Median
score

Default 0.297 0.0
Split 0.504 0.646
Example 0.969 1.0

Question 5: IPv6

Mode Average
score

Median
score

Default 0.813 1.0
Split 0.979 1.0
Example 1.0 1.0

Table 5.3: Results for questions 3 and 4. Question 4 scores noticeably higher.

# GPT completion sample
host : (...).102.0.0/24
lo : (...).152.0.0/24
port LAUS : (...).0.6.0/24
port LUCE : (...).0.5.0/24
port ZURI : (...).0.1.0/24

# Solution
host : (...).102.0.2/24
lo : (...).152.0.1/2
port LAUS : (...).0.6.1/24
port LUCE : (...).0.5.1/24
port ZURI : (...).0.1.2/24

Figure 5.1: Sample answer and solution for question 3.

5.2 Network interaction

Tables from 5.4 onward contain the results to each question. Every score is an average of three
runs, unless noted otherwise.

5.2.1 OSPF questions

Question 5: Existence of OSPF path

Question formulation “Does a path from router {A} to router {B} exist?”

Formulation 2 “Is a host connected to router {A} able to ping a host connected to router {B}?”

Format instruction “Make sure that the last line of your response contains a plain “Yes” or “No” as the
answer to the question.”

Format instruction 2 “’Answer with either “Yes” or “No”.”



5.2. NETWORK INTERACTION 27

ID Question and settings Mode Average score Answer type

5

Existence of path: Formulation 1,
Format Instruction 1

Default 1.0

Yes-no

Split 1.0
Existence of path: Formulation 2,
Format Instruction 1

Default 1.0
Split 0.92

Existence of path: Formulation 1,
Format Instruction 2

Default 0.667
Split 1.0

6

Shortest OSPF path: Format
Instruction 1

Default 0.417

List in format

Split 0.75
Feedback 0.75

Shortest OSPF path: Format
Instruction 2

Default 0.583
Split 0.75
Feedback 0.417

Shortest OSPF path: Format
Instruction 3

Default 0.319
Split 0.833
Feedback 0.75

Table 5.4: Results for the OSPF questions.

This question was run for two router pairs: STGA - GENE and ZURI - LUGA. The former is the
longest path in the network and the latter is the path to be load balanced. As such, each score
here is the average of six runs.

Somewhat expectedly, the format instruction 2 lowers the score, at least in the Default mode.
The plain instructions given often make GPT add a dot after its “Yes”/“No” answer. This is a
formatting error, since it could have been embedded in a sentence. Other than that, it can answer
this yes-no question with a high degree of accuracy.

Question 6: OSPF shortest paths

Question formulation “What are the shortest OSPF paths between {A} and {B}? Unless specified, the
default OSPF weight is 10.”

Format instruction “In the last lines of your response, list the paths like this (unrelated example):
STGA - ZURI - BASE
STGA - ZURI - BERN - BASE”

Format instruction 2 “Make sure to summarize the paths at the end of your response in a plain list like
this (unrelated example):
ZURI - LUCE - LUGA
ZURI - STGA - LUGA”

Format instruction 3
“Without explanation, list all these paths like this (unrelated example):
ZURI - LUCE - LUGA
ZURI - STGA - LUGA”

GPT can solve this question most of the time. Many times it scored 1.0, but scored 0.0 a few times,
because it did not fully follow the format, as seen in Figure 5.2. Listing multiple items continues
to make answers less consistent.
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# Completion
[...]
1. ZURI - LUCE - LUGA
(Cost: 20)
2. ZURI - BERN - LAUS -
LUGA (Cost: 20)

# Solution
ZURI - LUCE - LUGA
ZURI - BERN - LAUS - LUGA

Figure 5.2: Sample answer and solution for question 6.

Due to a problem with this question’s scoring function, we retroactively scored the same answers
after some adjustments to the function. The Default, Split, and Example mode answers are not
affected. For the Feedback mode, answers during the loop were scored with the function before the
adjustments. As such, only the final answer is scored with the current version. If it used the new
version during the entire loop, it would likely have been stopped earlier since it would have found
a correct answer earlier.

5.2.2 iBGP questions

ID Question and settings Mode Average score Answer type

7

Check iBGP full-mesh of our AS: Format
instruction 1

Default 0.0

Yes-no

Split 1.0
Example 0.333
Feedback 1.0

Check iBGP full-mesh of our AS: Format
instruction 2

Default 1.0
Split 0.5
Example 0.0
Feedback 0.167

8
Check iBGP all neighbours configured for
routers STGA, GENE, BERN

Default 0.778
Yes-no

Split 0.889

9 List missing iBGP links in the entire AS
Default 0.333

List in format
Split 0.6

10 List missing iBGP links each router
Default 0.958

List in format
Split 0.958

Table 5.5: Results for the iBGP questions. Scores are averaged by mode.

Question 7: Check if AS has full-mesh

Question formulation “These routers comprise one entire AS. Considering that, does this AS have a full
iBGP mesh configured?”

Format instruction “Answer with either “Yes” or “No”.”

Format instruction 2 “Make sure that the last line of your response contains either “Yes” or “No” as
your answer to the question.”

Despite being in the yes-no answer format, question 7 has been difficult to make GPT answer
correctly. GPT has to examine eight large configuration snippets to determine the answer. Despite
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this, some scores seem significantly better than others.

With the first instruction, GPT only answers with the actual requested answer, i.e. it does not
“think” or reason through the configurations before answering. This likely lowers the answer quality.
As such, it scores poorly in the Default mode. The Split mode by contrast is likely the optimal
formulation for this format instruction: In the first step, GPT can “think”, then it has to answer
directly according to this simple instruction. The Feedback mode’s high score is likely because it
can answer with the opposite here if it answered wrong.

Compared to this, the second instruction scores better in the Default mode. In the answers,
GPT generates its reasoning, as anticipated. In the Split mode however, the answer is never put
separately in the last line, in all three runs. The word “contains” in the instructions might make
it ambiguous. The Example here scores poorly as well. This could point to the provided example
scenario being confusing. It conflicts with the instruction, since we expect GPT to “think”.

Question 8: Check if router X has full-mesh

Question formulation “These routers comprise one entire AS. Considering that, does router {router} have
any bgp neighbor missing?”

Format instruction “Make sure that the last line of your response contains a plain “Yes” or “No” as the
answer to the question.”

GPT answers correctly most of the time, with the few wrong answers impacting the score greatly.
It manages to answer correctly more often with individual routers. As we ran this question for
three routers, the scores here are averages of 9 runs each.

Question 9: List missing links of AS

Question formulation “These routers comprise one entire AS. Considering that, has every router configured
their bgp neighbors properly? List all the missing bgp sessions, if there are any.”

Format instruction “In the last lines of your response, summarize your answer in this exact format:
ZURI -> LAUS
In this example answer, ZURI did not set up its iBGP session with LAUS properly. This example answer is
unrelated to the current scenario of the configurations.
If there is no link missing, then make sure to put a “None” in the last line of your response instead.”

This is a more complicated question than the yes-no pendant. The scores are similarly low. This
could be an indication that the entire AS is too large as a scope.

Question 10: List missing links of router X

Question formulation “These routers comprise one entire AS. Considering that, does router router have
any bgp neighbor missing?”

Format instruction “In the last lines of your response, summarize your answer in this exact format:
ZURI -> LAUS
In this example answer, ZURI did not set up its iBGP session with LAUS properly. This example answer is
unrelated to the current scenario of the configurations.
If there is no link missing, then make sure to put a “None” in the last line of your response instead.”



5.2. NETWORK INTERACTION 30

These results show high consistency and that GPT will perform better when the question has a
smaller scope. This question has been run for all of Group 1’s eight routers, three times in each
mode. Thus, the results are averages of 24 total runs.

Generally, the AS-encompassing questions tend to perform poorly compared to their single router
pendants. Additionally, the Split mode tends to perform noticeably better than the other modes.
This can be explained by the fact that GPT is “forced” to reason before formatting its answer. It
does not however make GPT answer questions perfectly.

5.2.3 Routing Policy

ID Question and settings Mode Average score Answer type

11

Pick preferred customer inbound traffic,
Group 1

Default 1.0

Answer in format

Split 1.0
Pick preferred provider inbound traffic,
Group 1

Default 1.0
Split 1.0

Pick preferred customer inbound traffic,
Group 2

Default 0.0
Split 0.0

Pick preferred provider inbound traffic,
Group 2

Default 0.333
Split 0.0

12

List advert. paths from neighbour X to other
neighbours, Group 1

Default 0.0

List in format
Split 0.267

List advert. paths from neighbour X to other
neighbours, Group 2

Default 0.667
Split 0.333

13

List allowed transit paths from customers to
providers, Group 1

Default 0.667

List in format

Split 1.0
List allowed transit paths from providers to
customers, Group 1

Default 0.0
Split 0.333

List allowed transit paths from customers to
providers, Group 2

Default 0.833
Split 0.833

List allowed transit paths from providers to
customers, Group 2

Default 0.0
Split 0.667

14

Check if routes with invalid RPKI value are
blocked, Format instruction 1

Default 1.0

Yes-no
Split 0.667

Check if routes with invalid RPKI value are
blocked, Format instruction 2

Default 0.667
Split 0.333

Table 5.6: Results for the routing policy questions. Scores are averaged by mode.

Question 11: Pick preferred neighbour (inbound traffic)

Question formulation “Here are the routers of the entire autonomous system {this as}. AS {this as} is
the customer/provider of AS {prov 1}/{cust 1} and AS {prov 2}/{cust 2}. To which provider/customer
is AS {this as} advertising a more desirable route?”

Format instruction “Provide your final answer in the last line of your response in the format: AS {Number}
example (unrelated to the configs in question): AS 19”

Results for Group 1 are significantly better than for Group 2. Group 1’s configurations contain
AS path prependings. GPT recognizes prepended paths, if they are present. This is not the case
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for Group 2, as they misconfigured their route maps. GPT falls back to the localpref values of
the outbound traffic route maps in many answers. In two out of the six answers, it chose Group
2’s AS number. One can conclude that if the route maps do not contain any AS prepending, GPT
answers arbitrarily.

Question 12: List transit paths from neighbour X

Question formulation “These routers make up the entirety of AS {this as}. To which neighboring ASes
does AS {this as} propagate AS {neighbor as}’s advertisements?”

Format instruction “List these allowed paths like this in the last lines of your response, excluding the
middle AS: X -> Y
This example path would mean that advertisements from AS X would be propagated to AS Y. This example
answer is unrelated to the current scenario.
If no such path is allowed, end your answer with a “None” in your last line.”

GPT performed poorly in this question. It often used the inverse order for the format, as illustrated
in the Figure 5.3. In the question formulation, the AS numbers were replaced with X and Y, since
the actual numbers used in this instruction corresponded to neighbours of Group 1. As such, GPT
might have taken the example directly without processing the explanation. The scores for Group 2
were better, but still not fully passable. The example in the format instruction was the same, i.e.
it did not correspond to any of Group 2’s neighbours.

# GPT completion sample
[...]
{IXP} -> {Neigh X}
{Cust 1} -> {Neigh X}
{Cust 2} -> {Neigh X}
{Prov 1} -> {Neigh X}
{Prov 2} -> {Neigh X}

# Solution
{Neigh X} -> {Cust 1}
{Neigh X} -> {Cust 2}

Figure 5.3: Sample answer and solution for the advertised paths from X question.

Question 13: List transit paths between customers and providers

Question formulation “These routers make up the entirety of AS {this as}. On one side, we have the
ASes {neigh 3} and {neigh 4}. On the other side, we have the ASes {neigh 1} and {neigh 2}. Between
them sits AS {this as}. To which of the ASes {neigh 3}/{neigh 4} does AS {this as} route advertisements
from AS {neigh 1}/{neigh 2}”

Format instruction “List these allowed paths like this in the last lines of your response, excluding the
middle AS: X -> Y
This example path would mean that advertisements from AS X would be propagated to AS Y. This example
answer is unrelated to the current scenario.
If no such path is allowed, end your answer with a “None” in your last line.”

In this question, the customer to provider transit worked better than the inverse. For Group 1,
the reason could be traced back to the example numbers matching some of their neighbours. One
answer is simply wrong, but for the other two, the order of numbers is swapped, similar to the
previous question (Figure 5.3). For Group 2 it is different. They did not set up the provider to
customer transit properly. As seen in Figure 5.4, GPT confidently presented a wrong answer.
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# GPT completion sample
[...]
{Prov 1} -> {Cust 1}
{Prov 1} -> {Cust 2}
{Prov 2} -> {Cust 1}
{Prov 2} -> {Cust 2}

# Solution
None

Figure 5.4: Sample answer and solution for the provider -> customer transit question.

Question 14: RPKI question

Question formulation “These routers comprise one entire AS. Considering that, does this AS accept
incoming routers with an ‘invalid‘ RPKI value?”

Format instruction “Make sure that the last line of your response contains a plain “Yes” or “No” as the
answer to the question.”

Format instruction 2 “’Answer with either “Yes” or “No”.”

This question is not difficult and GPT manages to answer it satisfyingly. The only error in this
yes-no question is unnecessary periods after the “Yes” or “No”, especially with format instruction
2. This is consistent with the results for other yes-no questions.

Scores for format instruction 1 have been modified to reflect its contents more accurately.

5.3 Costs

Taking into account the price reduction with GPT-4 Turbo and how we reduced the prompt size,
we arrived at the following total costs, excluding all previous experimentations:

� Total tokens fed (input): 2,554,142

� Total tokens generated by GPT (output): 263,438

� Total costs in US $: 33.43

We managed to significantly reduce the token count for each prompt by extracting only necessary
snippets. For example, the routing policy questions require close to 4500 tokens. That is for the
snippets for each of the eight configurations. For reference, the full configurations of Group 1
amount to 6500 tokens in total. This corresponds to a near 50 % reduction for this case.

Considering that many of the experiments were not run more than three times, the costs are still
significant for any future large-scale operation.

5.4 Interpretation

The wrong answers show that it is not easy to make GPT reason with networks in the context
of the routing project. Many of the results underline the difficulty in finding good question for-
mulations.For example, in some routing policy questions, we provided an example in the format
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instruction that was too close to the Group’s AS numbers. Even after explaining the example
and explicitly stating that it is unrelated, GPT answered in a wrong format. It shows that for
more complex questions, we need to be more and more precise, ultimately giving away excessive
information exclusive to the given network context.

GPT tends to answer more consistently for smaller scoped questions. The configuration extraction
questions are largely answered without issue; Only question 3 had low scores due to a too natural
formulation.The iBGP questions for the individual routers perform noticeably better than the AS-
encompassing counterparts as an example. This can also be interpreted as a limit to its reasoning
capabilities.

Letting GPT “think” or reason before answering improves the answer quality. The Split mode
facilitates this since GPT can answer in its own way before we demand it in format. This leads
to lengthy texts of reasoning before we reply with the format instruction. As such, it outperforms
other modes in many cases. Further, the Example mode performs poorly, where employed. Only
with the configuration extraction questions it works as expected. With more complex questions
this strategy fails, perhaps because GPT is forced to answer without working out the answer. In
some cases it overrides the formulation instruction’s goal to make it reason.

Lastly, GPT has problems with following instructions fully. With yes-no questions, it tends to put
some text around or a period after it. This is not entirely consistent with the format instructions.
Further, listing multiple items in format continues to be a challenge for GPT. It might ignore the
instructions more readily, as seen in the OSPF shortest paths question (Figure 5.2).



Chapter 6

Conclusion

We have asked GPT-4 Turbo a variety of questions with different settings. These included different
approaches to prompting (modes) and different format instructions. We find that approaches, where
GPT can reason and answer in its own way before putting it in format, tend to yield better results.
However, it is not always consistent; Perhaps due to GPT’s nondeterministic nature, the reliability
of answers varies greatly even within a few runs. It tends to not respect the format instruction
consistently and reasoning can often vary as well. All this means that much work is required
to make it answer networking questions consistently in a parsable format. Since it requires such
precision for more complex questions, we conclude that GPT-4 Turbo cannot understand networks
well without the user providing extensive context around the router configurations.

6.1 Outlook

If one were to utilize this thesis and its materials (codebase etc.) as a starting point, they would
have to repair flaws in the scoring functions. As of right now, some results needed to be corrected
manually, since the format instructions do not fully match the functions any more. As such, they
will need to be updated, particularly the yes-no questions. Furthermore, most of them do not yet
handle wrong formats with a score of -1. This would have to be updated as well. After changing
and improving the codebase, we could explore other ideas.

One idea would be to explore more prompting approaches. First, we could rework the prompting
modes such that each of the four current modes can be combined arbitrarily. For example, the
feedback loop could start as soon as the score is too low, regardless of mode. In general, the
feedback loop could be improved. We could introduce more complex feedback messages, e.g. by
varying the formulation every time or repeating the format instructions. In its current state, the
loop is repetitive and variance could help retrieve correct answers more quickly. Additionally, the
simulated mode could be extended by providing more examples with more variance. We could even
create wrong answers and then explain why they are wrong. This way, GPT would be more trained
than in our experiments.

Next, we could introduce a way to evaluate reasoning. In the incoming traffic preference question,
initial formulations resulted in correct answers, but with the wrong reasoning. Since we had few
runs per variation in this thesis, it was simple to evaluate the reasoning and correct the formulation.

34
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However, if in the future, a variation is run many more times, this might become difficult. Therefore,
we could make GPT output a reason, e.g. as a keyword. The scoring would take it into account
and we could see it in the output, letting us make more informed decisions.

One could also make the LLM choice more modular in the code. Other LLMs could yield equal
results without us knowing. Right now, the functions and modes are directly bound to GPT’s
prompt structure. To evaluate other models, one would have to change this part in particular.
This way we could compare the performance of different LLM’s.

It might be necessary to introduce proper statistics at some point. In this thesis, the results and
scorings have been simple. This is acceptable at the current scale. If we run all experiments on
a larger scale, the current score might be too one-dimensional. We could make more meaningful
changes and adjustments with proper statistics.

The field of large language model is relatively novel and changing at a fast pace. As seen, there
are many possibilities to explore for research still. Particularly in combination with networking,
there is potential to uncover new avenues to utilize it. The previously discussed actions could be a
stepping stone toward realizing this potential.
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