
Data Visualization of Switzerland’s Research

and Education Network

Group Thesis

Authors: Simon Englert, Leonard Wechsler

Tutor: Dr. Romain Jacob

Supervisor: Prof. Dr. Laurent Vanbever

September 2023 to December 2023

Acknowledgements

We would like to thank Prof. Dr. Laurent Vanbever, Dr. Romain Jacob and the Networked
Systems Group for giving us the opportunity to work on this project. We would also like to express
our sincere gratitude to our tutor, Dr. Romain Jacob, for his guidance during the project. Last
but not least, we would like to thank our families for their support.

i

Abstract

This thesis aims to answer two challenging questions: First, what part of network traffic and
power data is worth showing? Second, in which way can it be visualized best? As an use case
we decided to combine two independent data sources. On the one hand we analyze traffic and
energy consumption data of Switzerland’s National Research and Education Network. On the
other hand we use carbon dioxide emission and actionable electricity data. Based on that, we
design and implement a GUI, while having UI/UX experience in mind and ensure reliable, modular
and scalable code. We hope that our work can be of help to researchers and students in the field of
computer networks, network operators in industry, or anyone else interested in this field of research
in general.

ii

Contents

List of Figures iv

List of Tables iv

Acronyms v

1 Introduction 1
1.1 Motivation . 1
1.2 Task and Goals . 1
1.3 Overview . 2

2 Background and Related Work 3
2.1 Background . 3

2.1.1 Data Sources . 3
2.1.2 Tech Stack . 4

2.2 Related Work . 6

3 Design 7
3.1 Dashboard Design . 7

3.1.1 The Overview-Panel provides a high-level summary 7
3.1.2 The Traffic-Panel allows for fine-grained traffic analysis 7
3.1.3 The Energy & Emissions-Panel combines information on energy consumption

and carbon emissions. 8
3.2 Software Application Design . 12

3.2.1 Scalability Through Modularity . 12
3.3 Quality Control and Automation . 14

4 Evaluation 15
4.1 User Input Delay . 15
4.2 Caching Data . 16

5 Outlook 17
5.1 Live Data . 17
5.2 International Data . 17
5.3 Big Data . 17

6 Summary 19

References 20

iii

List of Figures

3.1 Displaying the complete router graph is messy. (Early version of the app) 8
3.2 Overview Panel . 9
3.3 Traffic Panel . 10
3.4 Energy & Emissions Panel . 11
3.5 Software Application Design . 12
3.6 Carbon Intensity Callback . 13
3.7 Continuous Integration Pipeline . 14

4.1 Delay for Different Actions . 15

List of Tables

4.1 Execution Time by Performed Operation . 16

iv

Acronyms

API Application Programming Interface . 1, 3, 8, 14

CD Continuous Deployment . 14

CI Continuous Integration . 1, 4 f., 14, 19

DCC Dash Core Components . 17

GUI Graphical User Interface . ii, 1–4, 7, 12, 18 f.

NREN National Research and Education Network . 3, 17

UI User Interface . ii, 2, 19

UX User Experience . ii, 2, 19

YAML yet another markup language . 5

v

Chapter 1

Introduction

1.1 Motivation

The Information Age brings many disruptions with it. One particularly groundbreaking one is the
explosion of data: We witness an exponential growth of data. Huge amounts of information are
being generated, stored and processed.

This can be overwhelming at times. How can we put this data to use? How can we extract
meaningful insights? What part of a data set is worth showing and how can certain aspects of the
data be visualized best?

We aim to address these questions in this thesis. On the one hand we investigate traffic data
from Switzerland’s Research and Education Network (Switch) [1]. On the other hand energy
and carbon emission data from Electricity Maps’ Application Programming Interface (API) [2] is
analyzed. We want to unravel intriguing observations about this network’s traffic behaviour. What
fresh revelations will the combination of two independent data sets yield?

Ultimately, we want to provide intuitive ways of data exploration of a network. We hope our
work might assist researchers and students of Computer Networks, network operators in industry
or generally be interesting to anyone who is excited about this field of research.

1.2 Task and Goals

To achieve this, we identified the following objectives:

• Solving the difficult questions: Which part of the data is most useful to visualize for the
intended users? What is the best way to visualize it?

• Design of a user-friendly GUI with three panels: an “Overview” panel summarizing traffic,
energy consumption and carbon dioxide emissions, while interactive “Traffic” and “Energy &
Emissions” panels allow users to explore data, view time series graphs and virtually relocate
the network to compare carbon dioxide emission data.

• Concrete realization of the GUI in software, including the implementation of a backend for
data parsing and evaluation, a modular frontend for rendering and interactivity and the
development of unit tests with a Continuous Integration (CI) pipeline for the reliability of
the application.

1

1.3. OVERVIEW 2

1.3 Overview

Chapter 2 introduces the data sources we use as well as the tech stack the application is built upon.
In addition we relate our work to other papers on the topic. Chapter 3 presents our UI/UX design as
well as the GUI’s software architecture. In Chapter 4 we assess our system. Responsiveness along
with computation-time of the data analysis are evaluated and discussed. Chapter 5 illuminates
possibilities of future work. Especially the integration of big data promises exciting insights. Last
but not least in Chapter 6 we give a short summary and final thoughts on the project.

Chapter 2

Background and Related Work

2.1 Background

In order to be able to analyze and discuss data, you first need sources to obtain it. Our data
sources are listed in section 2.1.1. Furthermore, the various tools and technologies used to create
the application are presented in section 2.1.2.

2.1.1 Data Sources

Switch

Switch is a Swiss foundation established in 1987. It operates Switzerland’s National Research and
Education Network (NREN) [3]. A NREN is a specialized internet service provider focusing on
the research and education communities within their country. They often provide a high-speed
backbone network, designed to meet these communities’ needs. They offer i.e. dedicated channels
for a given research project. Recently NRENs expanded their services beyond their main task:
Switch for example leverages the research network as infrastructure for managing Switzerlands and
Liechtensteins top level domain names. A nice piece of trivia is, that the used nameserver is located
in the IFW building of ETH Zurich.

We anticipated Switch to provide large data-sets containing information about deployed routers,
their approximate geographic locations, physical connections between them and the traffic on these
links. Also we hoped for data on the energy consumption of these devices. We obtained data about
the routers, their locations and the connections between them. Unfortunately we only received
about two days worth of traffic data and no energy consumption data at all.

To fill in the gap until more data is gained, we were forced to generate some dummy-data to
be used in the GUI. It serves as a placeholder and can easily be exchanged with real-data once
available.

Electricity Maps

Electricity Maps was founded in 2016 by Olivier Corradi with the intent to make data usable for
combating the challenges of climate change. They developed a free visualization platform showing
real-time data that suffices scientific standards. Further they offer a commercial API with a user
base of over 40.000 daily users, including high profile ones such as Google and Microsoft.

Their service focuses on providing accurate information on:

• Electricity consumption

3

2.1. BACKGROUND 4

• Carbon dioxide emissions

• Carbon footprint of electricity [2].

2.1.2 Tech Stack

A multitude of different tools and technologies were used to build the application.

Backend

We use python, a high-level, genral purpose programming language. Python is dynamically typed
and has garbage-collection. It also supports multiple programming paradigms such as object
oriented- and functional programming [4].

This enables us to leverage the pandas module for the analysis of data. Pandas is a library
written for python. It is specifically designed for data manipulation and analysis and thus offers
data structures and operations for e.g., manipulation of numerical tables and handling time series
data [5]. This led to it being widely used in the field of data science.

Frontend

Dash is a framework used for designing interactive web applications. It is built upon Flask as well
as React and was developed by Plotly a prominent data visualization company. Originally it only
supported python but has been extended to R, Julia and F#.

Dash allows developers to create GUIs with diverse data visualizations and interactive features.
This is achieved by:

• Providing a declarative syntax for definition and styling of the layout and individual elements.

• Supporting real-time updating.

• Facilitating callbacks that enable interactivity and thus foster data exploration [6].

Dash is deeply integrated with the Plotly library, which is used for the creation of interactive
and visually appealing plots and charts like heat maps, scatter plots, line- , bar- and pie-charts [7].

They allow end users a great degree of interaction like zooming and panning or hovering over
data points to show additional information. The produced graphics also are of high quality and
are therefore production ready.

Last but not least, Cytoscape is used for displaying a network graph, i.e. the position of nodes
and the links between them. Cytoscape is an open source software platform that was initially
designed to visualize molecular interaction networks and biological pathways. Since an agnostic
approach was chosen, it can be used for network analysis and visualization in general. Cytoscape’s
software architecture allows the usage of many differenty plugins that provide specialized function-
ality [8].

Testing and Continuous Integration

Ensuring a robust and reliable application can be achieved through testing.
We use python’s unittest module. It was inspired by JUnit a well established testing framework

of the Java language that played a crucial role in supporting test-driven development. We only
utilize basic features, but unittest is a mighty tool that employs a lot of object oriented concepts
such as test fixture, test cases, test suites and test runners [9].

2.1. BACKGROUND 5

CI is a method in software engineering that is closely related to testing. It involves continuous
building and testing of iterative code changes. The goal is, to catch bugs early and enforce agreed
upon standards through the development process.

The process, which consists of tasks, dependencies and so on, is defined using a configuration
file, which follows the yet another markup language (YAML) format. The job itself then gets
executed by runners that are already integrated in the GitLab server of ETH Zurich’s Electrical
Engineering and Information Technology Department.

Once set up, each push triggers a pipeline consisting of different stages (e.g.: general, frontend,
backend) and jobs. The result of this pipeline can then be analyzed through GitLab’s web interface
[10].

2.2. RELATED WORK 6

2.2 Related Work

There has been done plentiful work on the subject of visualizing network related data. Therefore
we can only present a small selection of papers.

Two interesting reads on the topic are ‘A Dual-View Approach to Interactive Network Visu-
alization’ [11] by Galileo Mark Namata Jr., Lise Getoor, Brian Staats and Ben Shneiderman of
the University of Maryland as well as the research paper ‘Network Visualization’ [12] by Andreas
Lodde of the University of Munich.

The first paper addresses the challenges of visualizing complex network data by implementing
a tool called DualNet. Using this tool, they perform a case study on an email communication
network. Compared to us, this paper chooses a similar approach: Developing a generic tool and
testing it on specific data. We went the other way round: Developing a tool that visualizes specific
data which now can be used for other data-sets as well.

The ladder of the two papers discusses network visualization, specifically with network man-
agers and system administrators in mind. The paper advocates for data-aggregation and appliance
of filters when serving the purpose of clarity. Since monitoring is important, from the administra-
tors perspective, usage of real-time data is discussed. We explore the possibility of real-time data
inclusion into our software in Chapter 5.

Second, we want to highlight Teodora Rajkovic Bachelor Thesis on the topic “21st Century
Data Visualization for Enhancing Student Learning” [13] which was also written in the Networked
Systems Group of ETH Zurich’s Electrical Engineering and Information Technology Department.
In her thesis, Teodora redesigns an ‘interactive web application supporting students during the
Advanced Topics in Communication Networks course project‘ [13]. Likewise to our work, this ap-
plication is built using the dash framework. Our tutor encouraged us to study her application prior
to designing our own. This was helpful in seeing dash in work and it inspired several ideas.

Richard A. Becker, Stephen G. Eick, Allan R. Wilks at AT&T’s Bell Laboratories contributed
greatly to this research field with their work “Visualizing Network Data”, which was published in
1995 [14]. They used the software SeeNet to visualize network data. Similar to our panel-approach,
they created different views. Interestingly enough, they also concluded that it is worth to show
some data on a static view and other data on a highly interactive view. They came to astonishingly
resembling conclusions as we did: ‘Static displays can be swamped with large amounts of data;
hence we introduce direct- manipulation techniques that permit the graphs to continue to reveal
relationships in the context of much more data. In effect, the static displays are parameterized so
that interesting views may easily be discovered interactively.’ [14]. This approach is carried out
analogously in our application in the traffic panel, as explained in the Design Chapter 3.

Chapter 3

Design

The design chapter discusses two topics:

1. The design process of the GUI: What data is interesting and how can we visualize it?

2. The design process of the application: How do we ensure flexibility, scalability and reliability?

3.1 Dashboard Design

Designing a visualization tool is challenging. As mentioned in section 1.2, the first step is, to filter
out relevant data and to extract meaningful information. This goes hand in hand with the decision
on how the data should be visualized.

As the sources provide large amounts of different kinds of data, an intuitive, non confusing
approach is needed. Theses challenges boil down to an application with several panels. Each panel
displays a different interesting aspect of the data.

3.1.1 The Overview-Panel provides a high-level summary

As there is a lot of data, a good entry point for the user is an overview of the data-set (Figure 3.2).
The overview panel shows distilled insights from the other panels and the data as a whole.

To summarize the network’s traffic, the Total Network Traffic is displayed in a time-series graph.
This requires the aggregation of all interface data Switch provides.

When analyzing the data-set, we noticed that a fraction of routers carries the majority of total
traffic. To emphasize this interesting fact, a bar-graph shows the Traffic per Node. With one glance,
one can distinguish between the important and insignificant routers.

One of the interesting insights that can be gained from the combination of the Electricity Maps
and the Switch data-sets, is the carbon footprint of the network. We wanted to visualize the
development of the emissions over the span of a day. As this varies from month to month, we
decided upon a Carbon Emission Heatmap. The heatmap allows to compile all this information
into one single picture.

3.1.2 The Traffic-Panel allows for fine-grained traffic analysis

One interesting aspect we wanted to visualize, was the Network Traffic of the Switch network
(Figure 3.3). The data-set includes time-series for most interfaces. But it is not apparent, where
the data is going to and how the relation between the interfaces look like.

7

3.1. DASHBOARD DESIGN 8

For this reason, we decided to create a Network Graph. This graph is constructed from the
topology data that comes with the data-set. It shows a node for each router and an edge for
each interface between. Plotting one big graph is way too messy (Figure 3.1), so another layer of
abstraction is necessary. We grouped together subsets of the nodes to form a City Graph. Clicking
on a city reveals the subset of underlying routers in a Router Graph.

With this approach, we can display the Network Traffic over time: i.e. by clicking on a link or
node. The graph is updated accordingly, when the corresponding element is selected.

The values can be displayed as absolute data rate or as utilization in relation to the bandwidth
of the link.

Figure 3.1: Displaying the complete router graph is messy. (Early version of the app)

3.1.3 The Energy & Emissions-Panel combines information on energy consump-
tion and carbon emissions.

We visualize energy data in two different ways (Figure 3.4): A time-series graph shows the Energy
Consumption at a specific point in time and an Average Day Energy Consumption line graph. This
graph averages the energy consumption of one month. Mean, maximal, and minimal energy usage
are then shown for every hour of the day. The month can be chosen with the Month Selection
Slider.

It really gets interesting when combining the energy data with the carbon intensity, obtained
using the Electricity Maps API. Multiplying yields the energy emission. The Carbon Emission
is plotted in the same graph as the Energy Consumption. This allows for direct comparison of
the two. In the same way as the Average Day Energy Consumption, carbon emission and carbon
intensity are averaged over a selected month and displayed in the Average Day Carbon Emission
graph. Again, the Month Selection Slider updates the graphs to display the data of the selected
month.

The carbon intensity varies for each country. It is interesting to see the emissions, if the network
would be based in another country than Switzerland. Using the Country Selection Dropdown, the
user can select a country and the data is fetched using the API. All graphs are updated accordingly.

3.1. DASHBOARD DESIGN 9

Figure 3.2: Overview Panel

3.1. DASHBOARD DESIGN 10

Figure 3.3: Traffic Panel

3.1. DASHBOARD DESIGN 11

Figure 3.4: Energy & Emissions Panel

3.2. SOFTWARE APPLICATION DESIGN 12

3.2 Software Application Design

The application is designed to host the GUI and process the given data. In order to achieve
good scalability, we decided on a modular approach. We used functional programming, which can
improve this kind of code-structuring [15]. Additionally, Dash is based on the React.js framework,
which uses functional programming. So it is natural to leverage this programming paradigm for
the purpose of this project.

3.2.1 Scalability Through Modularity

As seen in Figure 3.5, the application consists of a backend and a frontend section. With this
approach, frontend and backend features can be developed independently. It also allows for easy
modification and addition of new features. Data between front- and backend is passed and modified
using functions. This allows to use lazy evaluation, which increases performance and responsiveness.

Backend

Unit Tests

Frontend

Parsing

...

Router

API

Inter-
faces

Energy

Traffic

Overview

Element Panel
Layout

Panel
Layout

Panel
Layout

...Element

Element

Element

...Element

Element

Element

...Element

Element

CSV-File GUI

Evaluation

...

Traffic

Carbon

Energy

Figure 3.5: Software Application Design

The backend’s responsibility is, to first fetch data from the respective sources. Secondly, it
parses it into an usable format using pandas’ dataframes. Next, relevant information is extracted
and calculated. Modular parsing and evaluation functions exist to accomplish these tasks. The
processed results are stored in a cache. This drastically increases performance, because large com-
putations only need to be done once. Subsequent calls use the stored data instead of recalculating
it. To simplify the access to the extracted data, the backend_handler.py interface is provided.

If a user now interacts with the GUI, callbacks are triggered in the frontend. These call-
backs cause visual elements to update. If required, the frontend can request data using the
backend_handler.py interface. For example, 3.6 implements a callback for the energy panel,
seen in 3.4. The graph reacts to changes in the country selection dropdown and the month slider.
It receives the dataseries from the backend, and then renders it in a scatter plot.

3.2. SOFTWARE APPLICATION DESIGN 13

@app.callback(

Output(ids.ENERGY_CARBON_TIME_SERIES_GRAPH_03, "figure"),

Input(ids.ENERGY_CARBON_DROPDOWN, "value"),

Input(ids.ENERGY_CARBON_TIME_SERIES_GRAPH_SLIDER, "value")

)

def create_figure(zone, month):

Create figure

fig = go.Figure()

Get data using backend_handler

df_carbon_intensity = get_montly_carbon_intensity(zone,month)

Create a line chart

fig.add_scatter(

name = "CO2 Intensity",

x = df['time'],

y = df['carbon intensity direct']['mean']

)

return fig

Figure 3.6: Carbon Intensity Callback

Another special frontend feature is the separation of layout and components. Each component
represents an element on the dashboard. The alignment of these individual components is defined in
a separate layout. This approach is beneficial for modularity, as it decreases entanglement between
different components and achieves encapsulation.

3.3. QUALITY CONTROL AND AUTOMATION 14

3.3 Quality Control and Automation

To ensure that the application runs without problems, it needs to be tested. We implemented
unit tests, that can test any part of the code independently. Several aspects of the application are
tested, for example:

• If the application runs without crashing

• If individual functions execute correctly

• If the electricity maps API has network access and is working

• If functions return the right data types

It is difficult to create realistic tests. But as this was not the focus of the project, some basic
tests like the ones above are sufficient. If one publishes or sells the app, more sophisticated unit
tests would be necessary.

Tests: General

App

Tests: Backend

App

Tests: Frontend

App

Figure 3.7: Continuous Integration Pipeline

Executing the unit tests manually one by one and revising the results by hand is tedious and
error-prone. Here, Continuous Integration/Continuous Deployment (CD) pipelines, called CI/CD,
come into play. They provide a workflow that allows for automation of the testing process. They
especially excel in combination with version control tools, like Git [16].

For the project, a CI/CD pipeline was hosted on the ETH GitLab server. Whenever a new
version is pushed, the pipeline automatically runs all general-, frontend-, and backend-tests (Figure
3.7. A result of the test results is compiled and can be accessed over the GitLab web interface.
This makes it possible to keep an eye on older versions of the code and performance during testing.

Chapter 4

Evaluation

There are many ways to evaluate an application. One quantifiable measure is the responsiveness
of the app, or in other words, how fast the application reacts to user input.

The test setup consists of a server, which runs inside a virtual machine on the Networked
Systems Group’s server and a Firefox web browser as client, which runs locally on a MacBook
Air M1 2020. Both of them are on the same network. All test results are averaged over five
measurements.

4.1 User Input Delay

We measure the delay of interacting with certain elements in the app using Firefox’s network
profiler [17]. This allows us to measure the delay of an action.

This measurement of course includes some overhead that can not be prevented, like the user’s
network speed. But we can compare the different actions to each other nevertheless.

Figure 4.1: Delay for Different Actions

An interesting phenomenon to notice, are the long delays when measuring the rendering of the
Energy & Emissions Panel and the selection of a country. These delays are caused by interacting
with the Energy Maps API. To interact with the API, a request needs to be send to the Electricity

15

4.2. CACHING DATA 16

Maps server. For the result, we need to wait for the server’s response. As the API interactions
happen in real-time and are not cached, it takes some time for the results to arrive, which explains
the sizeable delays. All the other actions happen locally at the server and are therefore significantly
faster.

They have a base-delay that is caused by the Dash/Plotly framework. This adds up with the
backend delay triggered by the user’s action. Apart from two outliers, the delays only differ slightly,
depending on the actual computational effort.

4.2 Caching Data

The implementation of a cache is discussed in Chapter 3.2.1. But is it actually worth to use a cache
or is there too much operational overhead? To answer this question, the cache’s performance is
evaluated.

In these tests, we measure the time it takes to perform three different calculations. The tests
are taken with and without caching.

Performed Operation Without Cache [ms] With Cache [ms]

Router Overview Computation 4201 3.5
Parsing Network Topology 120 9.0
Total Traffic Computation 14361 3.4

Table 4.1: Execution Time by Performed Operation

From Table 4.1 we can conclude that caching improves performance dramatically. The improve-
ment ranges between a factor of 13 to 4700.

This stems from the fact that there is actually no computation whatsoever, when caching is
used. Instead the pre-computed data is read from the cache. This means that the computation time
does not decrease, but instead is performed at an earlier point in time. In practice, the computation
can be done by the backend independently, so a client would not notice a delay at all.

Chapter 5

Outlook

Having only a limited amount of time when working on a project, there are often much more ideas
than could be implemented. We would like to present the most interesting of these and explain the
effects of their implementation.

5.1 Live Data

Administering Live Data into the application would have exciting technical challenges one would
have to think about. The most prominent being the regular updating of graphs to show the real-
time data. Fortunately “Live Updating Components” are already integrated in the Dash Core
Components (DCC) Library: ‘The dcc.Interval element allows [. . .] to update components on a
predefined interval.’ [18].

Seeing the data displayed updating according to real events would better user experience even
further:

• Increased interactivity: Live updates allow users to dynamically explore and interact with
the data.

• Monitoring: Real-time updates enable an immediate response to specific events.

5.2 International Data

From a technical perspective it would be highly favourable to incorporate data of additional net-
works into the application: Because of the application’s modular and scalable architecture, such
an integration could be carried out easily. After possibly adjusting the parsing functions to handle
new input formats, the rest of the code could be used, as is, to visualize any network.

We think a user could highly benefit from such an implementation. One would be able to
explore other NRENs such as the pan-european GÉANT or Internet2 of the United States of
America. Investigating these networks alone is quite interesting but additionally, one would be
able to examine similarities and differences between NRENs.

5.3 Big Data

As mentioned earlier, unfortunately we did not have access to large amounts of data since Switch
could not provide enough data in the time we worked on the project. We think, however, that this
would be the most exciting improvement to the application.

17

5.3. BIG DATA 18

There would, again, be technical challenges. With larger data-set computation time in the
backend becomes much longer. This is a worrying thing since responsiveness is critical to a GUI.
Thankfully this can be easily mitigated using caching as explained in Chapter 3.2.1. Another
interesting aspect is temporal resolution: the problem of being able to display large time frames of
data as well as really fine grain visualisations. One approache to tackle this could be aggregation
of time intervals.

Displaying large quantities of data would allow for new insights. Users would be able to recognize
patterns like long-term trends. Possibly, they could even carry out a predictive analysis.

Chapter 6

Summary

We investigated which data is best suited for visualization to give users interesting insights into the
Switch network. We also investigated different methods to visualize the given data. With this in-
depth analysis, we not only wanted to improve the user experience. We wanted to provide valuable
and understandable information that contributes to a deeper understanding of the intricacies of
the Switch network.

Building upon that, we design a GUI, having UX/UI best practices in mind. We decided to
divide the GUI into three panels. The “Overview” panel, is static and condenses the traffic, energy
consumption and carbon emission behaviour of the Switch network. The “Traffic” and “Energy &
Emissions” panels are highly interactive. They shall give a user the ability to explore the network
data by themselves. The “Traffic” panel holds relational data between cities as well as individual
routers inside the network. Being interactive, by selecting a city, router or a link, traffic data gets
shown in a time series graph. As the name suggests, the “Energy & Emissions” panel holds data
about the energy consumption and carbon emission of the network. We show this data for a typical
day of a selected month. The user also can select a country and thus virtually move the network
to this location. Now adjusted carbon emission data gets shown.

After this design process we had to actually implement the GUI. We decided to follow the
functional programming paradigm. We implemented a backend, which parses the sometimes messy
data and subsequently evaluates it. Next we realized a frontend, taking the data, rendering the GUI
and enabling its interactivity. Throughout the project we took care for the code to be modular and
scalable. We also implemented unit tests in combination with a CI pipeline to ensure the reliability
of the application.

Last but not least, we evaluated our application in terms of its responsiveness and the computing
time of the data analysis.

19

Bibliography

[1] Switch. The Switch Website, 2023. Last accessed 23 December 2023.

[2] Electricity Maps ApS. Electricity Maps, 2022. Last accessed 21 December 2023.

[3] Switch. The Switch Website: ”Die Switch Stiftung”, 2023. Last accessed 22 December 2023.

[4] Python Software Foundation. The official python website, 2023. Last accessed 22 December
2023.

[5] The Pandas Contributors Communits. The official pandas website.

[6] Plotly. Dash python user guide, 2023. Last accessed 22 December 2023.

[7] Plotly. The official plotly website, 2023. Last accessed 22 December 2023.

[8] Cytoscape Consortium. The official cytoscape website, 2018. Last accessed 22 December 2023.

[9] The Python Software Foundation. Unit testing framework, 2023. Last accessed 22 December
2023.

[10] GitLab B.V. Use gitlab (manual), 2023. Last accessed 22 December 2023.

[11] Galileo Mark Namata Jr., Lise Getoor, Brian Staats, Ben Shneiderman. A dual-view approach
to interactive network visualization. Conference Paper, 2007.

[12] Andreas Lodde. Network visualisation. MediaInformaticsAdvanced Seminar on Information
Visualisation, 2008/2009.

[13] Teodora Rajkovic. 21st century data visualization for enhancing student learning. ETH Zurich
Research Collection, 2022.

[14] Allan R. Wilks Richard A. Becker, Stephen G. Eick. Visualizing network data. IEEE Trans-
actions on Visualizationand Computer Graphics, 1(1):16–21, 1995.

[15] J. Hughes. Why Functional Programming Matters. Computer Journal, 32(2):98–107, 1989.

[16] Git Community. Git-scm, 2023. Last accessed 22 December 2023.

[17] The Mozilla Foundation. Firefox profiler, 2023. Last accessed 22 December 2023.

[18] Plotly Technologies Inc. Dash Python: Live Updates, 2023. Last accessed 21 December 2023.

20

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Task and Goals
	Overview

	Background and Related Work
	Background
	Data Sources
	Tech Stack

	Related Work

	Design
	Dashboard Design
	The Overview-Panel provides a high-level summary
	The Traffic-Panel allows for fine-grained traffic analysis
	The Energy & Emissions-Panel combines information on energy consumption and carbon emissions.

	Software Application Design
	Scalability Through Modularity

	Quality Control and Automation

	Evaluation
	User Input Delay
	Caching Data

	Outlook
	Live Data
	International Data
	Big Data

	Summary
	References

