
Understanding the performance of eBPF-based
applications

Semester Thesis

Author: Xinge Xie

Tutor: Laurin Brandner and Georgia Fragkouli

Supervisor: Prof. Dr. Laurent Vanbever

October 2024 to January 2025

Abstract

The rise of modern computing demands high-performance, low-latency systems capable of han-
dling complex workloads. Extended Berkeley Packet Filter (eBPF) technology offers a promising
solution by allowing user-space applications to inject custom programs into the kernel, optimizing
data processing and reducing overhead. This thesis investigates the performance characteristics of
eBPF-based applications, focusing on scalability, resource utilization, and interference in multi-core
environments. By designing and benchmarking a system under various configurations, we analyze
factors such as the number of eBPF programs, map types, CPU allocation, and memory access
patterns. The findings provide actionable insights into the design and optimization of eBPF-based
systems for high-performance network applications.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Task and Goals . 1
1.3 Overview . 1

2 Background and Related Work 2
2.1 Background . 2

2.1.1 Extended Berkeley Packet Filter . 2
2.1.2 eBPF Hooks . 2
2.1.3 eBPF Maps . 3
2.1.4 Cache Coherence . 3

2.2 Related Work . 4

3 Design 5
3.1 Benchmark System Architecture . 5
3.2 eBPF Program Chain . 6
3.3 eBPF Program Interference . 7

3.3.1 Scaling with eBPF Programs and Maps . 7
3.3.2 Scaling with CPU Cores . 8

4 Evaluation 9
4.1 Benchmark Setup . 9
4.2 eBPF Program Triggering . 9
4.3 Benchmark Results . 10

4.3.1 Scaling with eBPF Programs . 10
4.3.2 Scaling with eBPF Map Size . 12
4.3.3 Scaling with CPU Cores . 13

5 Outlook 16

6 Summary 17

References 18

ii

Chapter 1

Introduction

1.1 Motivation

The rise of modern computing demands high-performance, low-latency systems capable of efficiently
handling complex workloads. The Extended Berkeley Packet Filter (eBPF) enables user-space ap-
plications to inject custom programs into the kernel for optimized data processing, avoiding expen-
sive user-kernel space switches and bypassing slow kernel code. While eBPF offers flexibility and
performance benefits, understanding its impact on system performance under different configura-
tions is crucial for harnessing its full potential.

1.2 Task and Goals

This thesis investigates the performance characteristics of eBPF-based applications, focusing on
their scalability, resource utilization, and interference in multi-core environments. By developing a
benchmark system, we aim to analyze how various factors, such as the number of eBPF programs,
map types, and CPU allocation, influence application performance. The ultimate goal is to provide
actionable insights for designing efficient eBPF systems.

1.3 Overview

The main sections are as follows:

• Section 2.1: Describes eBPF’s evolution, three hook points to attach eBPF programs during
network packet processing, and the characteristics of eBPF maps.

• Section 3.1: Explains the design of the benchmark system used to evaluate eBPF programs.

• Section 3.2: Details how eBPF program chains can be used to scale with the number of
eBPF programs attached.

• Section 3.3: Describes how we design benchmarks to run eBPF programs simultaneously
and explores different configuration options and their potential impacts on performance.

• Section 4.2: Evaluates the unavoidable performance impacts of adopting eBPF technology.

• Section 4.3: Presents the evaluation results, focusing on the performance and scalability of
eBPF programs under various configurations.

1

Chapter 2

Background and Related Work

2.1 Background

2.1.1 Extended Berkeley Packet Filter

The Berkeley Packet Filter (BPF) is an in-kernel virtual machine for packet filtering, developed in
1992 for UNIX[10]. Its primary purpose is packet filtering to improve the performance of network
monitoring applications, such as tcpdump[13].

eBPF is an extended form of the BPF virtual machine, introduced in 2013, with a network-
specific architecture designed to be a general-purpose filtering system[12]. It enables user-space
applications to inject code into the kernel at runtime without recompiling the kernel or installing
optional kernel modules[13]. eBPF programs can be written in restricted C and compiled into
bytecode using the LLVM Clang compiler. The bytecode is then loaded using the bpf() system
call.

In a quest to improve application performance, developers use eBPF to offload (parts of) ap-
plications to the kernel, avoiding expensive user-kernel space switches and bypassing slow kernel
code.

2.1.2 eBPF Hooks

eBPF allows the execution of bytecode at specific locations within the kernel, known as hook points.
These hook points significantly expand the functionality of eBPF beyond its original design[11].
Once eBPF programs are attached to specific hook points and registered for certain events. These
programs execute whenever an event for which they are registered occurs.

In computer networking, hooks are used to attach eBPF programs and intercept packets during
their processing in the operating system. Packets entering the OS are processed by several layers
in the kernel: the socket layer, TCP stack, Netfilter, Traffic Control (TC), the eXpress Data Path
(XDP), and the NIC. Packets destined for a userspace application traverse all these layers[15],
where they can be intercepted to enable packet mangling and filtering.

Traffic Control

Traffic Control (TC) operates at the Linux link layer to manage and manipulate the transmission
of packets[8]. When attaching eBPF programs to TC, a specific network interface and attach
point (ingress, egress, or custom) must be selected. Multiple eBPF programs can be attached with
different priorities using libbpf[3] or similar wrapper libraries. These programs are triggered and
executed in order of priority. The common return values can be as follows:

2

2.1. BACKGROUND 3

• TC ACT OK: Terminate the packet processing pipeline and allows the packet to proceed, even
if lower-priority eBPF programs exist.

• TC ACT SHOT: Terminate the packet processing pipeline and drops the packet, even if lower-
priority eBPF programs exist.

• TC ACT PIPE: Iterate the packet to another lower-priority eBPF program, if available.

eXpress Data Path

eXpress Data Path (XDP)[7] programs can intercept packets directly from the NIC driver, po-
tentially before the Linux socket buffer (skb) is allocated. This allows for earlier packet drops
compared to TC. However, libbpf currently does not support attaching multiple XDP programs,
though this feature is under development.

Socket Message

Socket message programs are invoked for every sendmsg or sendfile system call, operating at a
layer above TC and XDP. To trigger an eBPF program attached to a socket message, a Socket
Operations (Socket Ops) program must first be attached to cGroups. This setup allows the program
to adjust per-connection settings or record socket information. Once recorded, the socket can trigger
the associated socket message eBPF program.

2.1.3 eBPF Maps

eBPF programs operate under certain resource constraints, such as a maximum stack size of 512
bytes and a limit of 4096 instructions. These restrictions ensure that eBPF programs do not
consume excessive resources, preserving the stability of the system. For scenarios requiring more
storage or communication between components, eBPF maps provide an effective mechanism for
interaction between eBPF programs (kernel space) and user space.

Maps come in various types, with the generic type being the ARRAY map. Similar to a standard
array, an ARRAY map has numeric keys starting at 0 and incrementing sequentially. A specialized
variant, the PERCPU map, maintains a separate array for each logical CPU. When an eBPF program
accesses a PERCPUmap through a helper function, it implicitly accesses the array associated with the
CPU on which the program is currently running. Since preemption is disabled during eBPF program
execution, no other programs can concurrently access the same memory. This design guarantees the
absence of race conditions, enhancing performance by eliminating congestion and synchronization
overhead. However, this improvement comes at the cost of a larger memory footprint.

When defining an ARRAY or PERCPU map, the key size must always be 4 bytes, representing a
32-bit unsigned integer, while the value size is essentially unrestricted and fixed.

2.1.4 Cache Coherence

In a shared-memory multiprocessor system where each processor has its own private cache, mul-
tiple copies of shared data can exist across the system. Cache coherence is the discipline that
ensures changes to the values of shared data are propagated throughout the system in a timely and
consistent manner [14].

Modern CPUs typically implement the MESI-like (Modified, Exclusive, Shared, Invalid) proto-
col to maintain cache coherence. When two processes running on separate CPU cores attempt to
update the same memory address simultaneously, the cache coherence protocol ensures consistency

2.2. RELATED WORK 4

by invalidating the cache line in one core when it is updated in the other. Ultimately, the updated
value is resolved in the shared last-level cache (LLC). While the changes may not propagate to
main memory immediately, this process increases the number of references to the last-level cache,
potentially impacting performance.

2.2 Related Work

There has been significant research aimed at accelerating network packet processing. The Data
Plane Development Kit (DPDK) [1] enables offloading TCP packet processing from the operating
system kernel to processes running in user space. This offloading achieves higher packet throughput
compared to the interrupt-driven processing provided by the kernel. However, it requires CPU
pooling in user space, which can introduce additional overhead.

Smart Network Interface Cards (SmartNICs) represent another emerging trend, where parts
of network processing are offloaded to hardware, such as FPGAs in the Azure cloud [6]. This
approach provides high scalability and throughput while conserving valuable cloud CPU resources.
Nevertheless, developing such a software and hardware co-designed system is challenging due to its
complexity.

In eBPF-based applications, network acceleration is achieved by avoiding user-kernel space
switches and bypassing slow kernel code. Writing eBPF programs is generally easier than devel-
oping SmartNIC solutions but still presents difficulties. Prior work [9] has examined how the data
structures used by eBPF programs affect performance. However, other factors that may influence
performance have been largely overlooked, such as which parts of applications are offloaded, how
frequently the code paths are triggered, and how many eBPF programs are running concurrently.

Chapter 3

Design

3.1 Benchmark System Architecture

To evaluate how eBPF programs affect the performance of network packet processing, we focus
primarily on the end-to-end latency of network packets and the increase in computing resource
usage and interference when introducing additional eBPF programs.

In a typical client-server model, network latency ranges from tens to hundreds of milliseconds,
which is significantly higher than the time required to load and execute a single eBPF program for
processing a packet. Consequently, our primary focus is on low-latency, high-load environments,
such as distributed systems connected via high-speed networks. To simplify the evaluation, we
implement an echo process where the server responds with the same payload it receives. This echo
process runs locally alongside the benchmark suite. To ensure precise measurement, we isolate
the CPU resources using system control groups. This setup dedicates a specific CPU core to the
operating system and unrelated processes, while assigning separate CPU cores for the HTTP load
generator and the echo server. This isolation minimizes interference and ensures a more accurate
analysis of the system’s performance.

eBPF programs eBPF loader http load generator echo server

controller log files

targeted sys func

attached eBPF
programs

loaded eBPF
programseBPF maps

user space

kernel space

control flow

http flow

CPU isolation

Figure 3.1: Benchmark System Architecture

5

3.2. EBPF PROGRAM CHAIN 6

As illustrated in the figure 3.1, the eBPF programs encompass various functionalities associated
with different system hook points and eBPF maps. Configuration parameters, such as map type
and size, can be customized during compilation. To load eBPF programs from user space to kernel
space, we utilize libbpf-rs [4], a Rust wrapper for libbpf. The loader facilitates specifying
attachment points, detaching programs, and monitoring the status of eBPF programs and their
maps.

For HTTP load generation, we employ k6 [2], which can produce targeted HTTP request flows
and collect a variety of performance metrics as output.

The controller serves as the entry point of the benchmark system. It determines the eBPF
programs to load and attach, configures parameters, and specifies the HTTP load patterns. Addi-
tionally, it manages resource allocation, such as assigning CPU cores to the HTTP load generator
and the echo server. Finally, the controller clears the eBPF programs and processes the log files,
which serve as inputs for subsequent visualization.

3.2 eBPF Program Chain

Triggering even an empty eBPF program introduces a slight latency [9] due to CPU time consump-
tion. However, this latency is generally negligible compared to the network stack latency, as eBPF
is designed for high-performance processing. To better understand how eBPF programs impact
performance, we amplify the effect by triggering the programs multiple times.

A single HTTP request can trigger not just one eBPF program, but multiple eBPF programs.
While different eBPF programs can be attached to various hook points, this approach does not
scale well, as each hook point requires a corresponding eBPF program. However, certain special
hook points allow the attachment of multiple eBPF programs, creating a program chain.

As part of Linux’s packet management and filtering mechanisms, Traffic Control (TC) operates
at the link layer [5], and the TC is bound to the network interface. In our design, the client and
server run on the same machine, using the loopback interface, which is a virtual network interface
for internal communication. TC provides three attach points: ingress, egress, and custom attach
points. In this work, we focus on the TC ingress point.

The return value of an eBPF program attached to TC determines whether the packet is sent
to the upper network layer, dropped, or forwarded to another eBPF program. The return value
TC_ACT_PIPE allows the triggering of another eBPF program. The order of execution in a TC
program chain is determined by the priority number assigned when the eBPF program is attached.

It is worth noting that packets unrelated to the benchmark system may also trigger the eBPF
programs attached to TC. To handle this, we use port-based filtering to identify and exclude these
unrelated packets, returning TC_ACT_OK to send them directly to the upper network layer without
invoking the eBPF program chain. Additionally, these unrelated packets are processed on reserved
CPU cores, as described in Section 3.1, ensuring they do not affect the benchmark results.

Using the eBPF program loader, we can either load multiple eBPF programs or attach a single
loaded program multiple times to a TC hook point. These two configurations, illustrated in Figure
3.2, have distinct implications. Each loaded TC eBPF program has its own eBPF map, while
multiple attachments of the same loaded program share the same map at runtime. The length of
the eBPF program chain can extend to thousands of programs or even longer, constrained only by
the available kernel space. These configurations influence performance differently depending on the
map access pattern and the HTTP load pattern.

3.3. EBPF PROGRAM INTERFERENCE 7

tc 1 tc 2 tc N

http load
generator echo server

···

eBPF map

tc 1 tc 2 tc N

http load
generator echo server

···

eBPF map

user space

kernel space

eBPF map eBPF map···

Figure 3.2: eBPF program in TC: Load once and attach multiple times vs. load and attach multiple
times.

3.3 eBPF Program Interference

eBPF applications often run in multi-core environments. To understand the performance of such
applications, we should also benchmark scenarios where multiple eBPF instances run simultane-
ously. This allows us to study their interactions, evaluate how they affect each other, and analyze
the relationship between computing resources and performance.

3.3.1 Scaling with eBPF Programs and Maps

Consider multiple processes triggering the TC chains, as shown in Figure 3.3. In the configuration
where an eBPF program is loaded once and attached N times, all eBPF programs in a chain
share the same eBPF map. When packet B follows packet A and their processing is scheduled on
different CPU cores, multiple instances of the eBPF chain may run simultaneously in kernel space,
accessing the shared map. If an eBPF program updates this shared map, it can introduce write
conflicts, leading to invalid cache lines, increased cache misses, and ultimately added latency to
packet processing. As the number of eBPF programs in the chain increases, the total number of
map entries remains fixed, but the frequency of accesses increases, exacerbating the write conflict.
However, in read-intensive access patterns, performance benefits can be achieved by leveraging the
”hot map” effect.

In contrast, the configuration where the same TC eBPF program is loaded and attached N

tc 1 tc 2 tc Npackage A ···

eBPF map

tc 1 tc 2 tc Npackage B ···

tc 1 tc 2 tc Npackage C ···

eBPF maps

tc 1 tc 2 tc Npackage D ···

···

Load once, attach N times Load and attach N times

Figure 3.3: eBPF map sharing and access patterns.

3.3. EBPF PROGRAM INTERFERENCE 8

times creates a scenario where each eBPF program in the chain has its own eBPF map. Despite
this, map sharing may still occur when packets are processed simultaneously. For instance, if
multiple packets trigger instances of the same eBPF program (with identical IDs), these instances
may share a map. Unlike the previous configuration, the total number of maps now scales with the
chain length, increasing the total number of map entries. While this alleviates the aggravation of
write conflicts with a growing chain length, the increased number of maps consumes more kernel
space and introduces additional cache misses.

To address this problem, the eBPF community provides per-CPU maps, which maintain a
separate array for each logical CPU. When an eBPF program accesses the map, it implicitly uses
the array assigned to the CPU it is currently running on. This guarantees that no other program
can concurrently access the same memory, improving performance. However, this approach comes
at the cost of increased memory usage, as the number of maps scales with the number of logical
CPUs rather than being a single map.

3.3.2 Scaling with CPU Cores

Increasing the number of CPU cores allows a web server to process more requests simultaneously,
thereby increasing throughput. However, it also results in more eBPF programs running concur-
rently, which may introduce interference and prevent throughput from scaling linearly with the
number of CPU cores.

To investigate this behavior, we enable the controller to dynamically adjust the CPU core
allocation for the HTTP load generator. Additionally, we monitor the CPU usage of the echo
server to ensure it does not fully utilize the CPU resources assigned to it. This guarantees that
the echo server does not become a bottleneck, allowing us to focus on analyzing the performance
of the HTTP load generator under varying CPU core allocations.

Chapter 4

Evaluation

4.1 Benchmark Setup

We set up a 10-core virtual machine on a dual-socket server equipped with Intel(R) Xeon(R) CPU
E5-2670 v3 @ 2.30GHz, with each socket containing 12 cores. The virtual machine operates on a
single socket, exclusively utilizing its cores and remaining isolated from other users. The server’s
cache sizes are 32KB per core for L1, 256KB per core for L2, and 30MB shared for L3.

We use k6 [2] as the HTTP load generator. It sends HTTP requests based on a given config-
uration and collects metrics. Specifically, we use the http_req_duration metric to measure the
total round-trip latency of requests.

The echo server, running on separate cores, responds with the same payload it receives. As a
result, an attached eBPF program is triggered twice for each request: once for the HTTP request
and once for the HTTP response. Additionally, we implement a filtering mechanism in the eBPF
program to process target package selectively.

4.2 eBPF Program Triggering

In this section, we evaluate the performance impact of triggering an empty eBPF program. This
program performs no operations and returns immediately upon being triggered. Note that the
triggering process contributes only a small portion of the overall latency compared to typical net-
work latency. To ensure accurate results, we minimize and stabilize the original HTTP round-trip
latency.

For this experiment, we allocate one core each to k6 and the echo server, with a maximum
of one HTTP connection to eliminate context switching and reduce variability. Additionally, k6
sends HTTP GET requests, which have no payload and a very short total length, enabling the echo
server to respond quickly.

We measure the round-trip latency under three different eBPF trigger points: tc, xdp, and
sk msg. These results are compared with the baseline scenario where no eBPF program is attached.
The eBPF program is triggered twice per HTTP round trip: once for the request and once for the
response. For sk msg, an additional step involves calling sockops to store the socket in a sockmap.

Figure 4.1 shows the average, median, and 95th percentile latencies of HTTP round trips with
and without attached eBPF programs. The trigger times for tc and xdp are similar. However,
sk msg has a longer trigger time, as it involves calling additional sockops functions in HTTP
connections. Nonetheless, the triggering times, measured in microseconds, are negligible compared
to typical network latencies.

9

4.3. BENCHMARK RESULTS 10

(a) Average Latency

none sk_msg tc xdp
Attach Point

0
20
40
60
80

100
120
140

Av
er

ag
e

La
te

nc
y

(u
s) 105

120 112 115

(b) Median Latency

none sk_msg tc xdp
Attach Point

0
20
40
60
80

100
120
140

M
ed

ia
n

La
te

nc
y

(u
s)

90
101 95 97

(c) 95th Percentile Latency

none sk_msg tc xdp
Attach Point

0

50

100

150

200

250

P9
5

La
te

nc
y

(u
s) 184

229 208 219

Figure 4.1: HTTP round-trip latency across different eBPF attach points.

4.3 Benchmark Results

In this section, we evaluate the performance and scalability of eBPF-based applications under
different configurations. We use k6 as the load generator, maintaining 100 connections to send
HTTP POST requests with a 200-byte random string payload. The total number of packets sent
remains constant across experiments.

4.3.1 Scaling with eBPF Programs

As mentioned in Section 3.2, we can trigger an eBPF program chain at the tc attach point. Here,
we assess how the length of the eBPF program chain affects performance. The eBPF programs
in the chain are identical except for their triggering order. Each program uses a map with 1024
entries, where each entry is 256 bytes. The map type can be an ARRAY or a PERCPU ARRAY, the
latter maintaining a separate array for each logical CPU. We allocate five CPU cores for the HTTP
load generator in experiments.

The eBPF program initially filters packets on the loopback interface, processing only HTTP
requests from the load generator. It stores the HTTP payload into a randomly selected entry in the
eBPF map. As a result, the eBPF program runs predominantly in the kernel space of the HTTP
load generator.

We measure the HTTP round-trip latency and normalize it against the baseline latency (without
any eBPF program attached). To identify performance bottlenecks, we compare the results with
an ”empty” eBPF chain that triggers but does not update the eBPF map. Additionally, we use
Perf to measure L3 cache misses—specifically, those that miss the L3 cache and are served from
DRAM.

In Figure 4.2, we observe that latency increases as more eBPF programs are attached. This
is due to the additional CPU time required for packet filtering and processing in the eBPF chain.
Comparing the eBPF chain that updates an entry in a PERCPU ARRAY map with one that only
filters, we find that both have similar L3 cache miss rates. However, the latency is higher for
the map-update case, attributable to the overhead of packet reads and map update function calls.
When using a normal ARRAY map instead of a PERCPU ARRAY, updates from multiple connections on
different cores to the same map location invalidate cache lines, leading to increased L3 references,
cache misses and higher latency.

4.3. BENCHMARK RESULTS 11

(a) Normalized Average HTTP Request Latency

1 2 4 8 16 32 64 128 256 512 1K
Number of eBPF program attached

1.0

1.5

2.0

2.5

3.0

Ti
m

e
ra

tio

array
percpu array
empty

(b) Normalized L3 Cache Misses

1 2 4 8 16 32 64 128 256 512 1K
Number of eBPF program attached

1

2

3

4

5

Ca
ch

e
m

iss
es

 ra
tio

array
percpu array
empty

Figure 4.2: Configuration 1: Load Once, Attach N Times

(a) Normalized Average HTTP Request Latency

1 2 4 8 16 32 64 128 256 512 1K
Number of eBPF program attached

1

2

3

4

5

6

Ti
m

e
ra

tio

array
percpu array
empty

(b) Normalized L3 Cache Misses

1 2 4 8 16 32 64 128 256 512 1K
Number of eBPF program attached

2

4

6

8

10

12

Ca
ch

e
m

iss
es

 ra
tio

array
percpu array
empty

Figure 4.3: Configuration 2: Load and Attach N Times

In Figure 4.3, we analyze the case where each eBPF program is loaded and attached repeatedly.
In this configuration, maps are not shared among eBPF program instances. Although write conflicts
still exist when updating ARRAY maps, the total map size scales with the number of eBPF programs.
Thus, the severity of write conflicts does not worsen with the number of programs. However, the
total map size increases with the number of eBPF programs, leading to more L3 cache capacity
misses, contributing to higher latency. This effect is even more pronounced with PERCPU ARRAY

maps, as they require additional space to maintain separate arrays for each logical CPU core.

4.3. BENCHMARK RESULTS 12

4.3.2 Scaling with eBPF Map Size

In the previous benchmark, we observed a trade-off between write conflicts and total map size,
which are influenced by the memory access range, access patterns, and update frequency. In this
section, we fix the update frequency and evaluate how round-trip latency and cache misses scale
with map size. Here, we load a single eBPF program and attach it 64 times, allowing all instances
to share the same map. Instead of performing one update per eBPF program instance, we perform
10 updates per instance with two different access patterns:

• Write 10x1: Each eBPF program instance updates 10 random, different entries in the map.

• Write 1x10: Each eBPF program instance updates one random entry 10 times.

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M
Size of eBPF map [bytes]

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
ra

tio

L1 L2 L3

array, write 1 x 10
array, write 10 x 1
percpu array, write 1 x 10
percpu array, write 10 x 1

Figure 4.4: Normalized Average HTTP Request Latency

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M
Size of eBPF map [bytes]

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ca
ch

e
m

iss
es

 ra
tio

L1 L2 L3array, write 1 x 10
array, write 10 x 1
percpu array, write 1 x 10
percpu array, write 10 x 1

Figure 4.5: Normalized L1d Cache Miss

4.3. BENCHMARK RESULTS 13

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M
Size of eBPF map [bytes]

1

2

3

4

5

6

Ca
ch

e
m

iss
es

 ra
tio

L1 L2 L3array, write 1 x 10
array, write 10 x 1
percpu array, write 1 x 10
percpu array, write 10 x 1

Figure 4.6: Normalized L3 Cache Miss

We normalize the results against a baseline configuration with no eBPF program attached.
Figure 4.4 shows the normalized average round-trip latency, Figure 4.5 shows the L1 data cache
misses, and Figure 4.6 shows the L3 cache misses as the size of the eBPF map scales.

For the ARRAY map: - Both access patterns start with high latency due to small map sizes
causing more contention among eBPF program instances. As the map size increases, the memory
access range grows, reducing write conflicts and subsequently lowering latency. - The Write 10x1
access pattern, which accesses more memory addresses, incurs more capacity misses as the map
size increases. This leads to a rapid latency increase for large map sizes. - The Write 1x10 access
pattern access less memory addresses. Consequently, it results in fewer cache misses and slower
latency growth.

For the PERCPU ARRAYmap: - It performs well for small map sizes, as there are no write conflicts.
However, latency starts to increase as the map size exceeds the L1 cache size and grows rapidly
when the map size surpasses the L2 cache size. - For large map sizes, PERCPU ARRAY maps require
more memory space because they allocate separate arrays for each logical CPU. This leads to more
capacity misses and significantly higher latency compared to ARRAY maps.

If we configure PERCPU ARRAY maps to have the same total size as ARRAY maps while considering
the number of cores, it requires setting significantly fewer entries for PERCPU ARRAY maps in an
eBPF program before compilation. In this way, PERCPU ARRAYmaps can offer better performance by
eliminating write conflicts. However, they may require additional functionality to handle distributed
data across cores, introducing extra complexity.

Overall, for workloads with working sets larger than the L1 cache, ARRAY maps may be more
reasonable to use despite the existence of write conflicts.

4.3.3 Scaling with CPU Cores

The write conflicts and memory space requirements of PERCPU maps are related to the number of
CPU cores allocated to eBPF-based applications. To investigate this relationship, we conducted a
benchmark where we scaled the number of CPU cores. In this benchmark, a single eBPF program
was loaded and attached 64 times at the tc hook point, with 1 to 6 CPU cores allocated to the
HTTP load generator.

4.3. BENCHMARK RESULTS 14

We measured the throughput normalized against the throughput without any eBPF program
attached and running on a single core. Figures 4.7a and 4.7c show results for ARRAY maps, while
Figures 4.7b and 4.7d show results for PERCPU maps.

(a) ARRAY map, Write 1x10

1 2 3 4 5 6
Core Number

1.0

1.5

2.0

2.5

3.0

3.5

4.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

256B map
512B map
16KB map

(b) PERCPU map, Write 1x10

1 2 3 4 5 6
Core Number

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

No
rm

al
ize

d
Th

ro
ug

hp
ut

16KB map
8MB map
32MB map

(c) ARRAY map, Write 10x1

1 2 3 4 5 6
Core Number

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
Th

ro
ug

hp
ut

256B map
512B map
16KB map

(d) PERCPU map, Write 10x1

1 2 3 4 5 6
Core Number

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

16KB map
8MB map
32MB map

Figure 4.7: Normalized throughput scaling with CPU cores

For ARRAY maps: - In Write 1x10 pattern (Figure 4.7a) and Write 10x1 (Figure 4.7c) pattern,
the throughput scales well when the map size is large enough but still smaller than the L1 cache
size. However, for small map sizes, write conflicts worsen as the number of cores increases, even
causing throughput to decrease with additional cores.

For PERCPU maps: - In Write 1x10 pattern (Figure 4.7b) and Write 10x1 (Figure 4.7d)
pattern, small map sizes show better scalability. When the map size is smaller than the L1 cache, it
achieves near-linear scalability with the number of cores. In the Write 10x1 pattern (Figure 4.7d),
which accesses more memory addresses, scalability becomes more sensitive to map size. This is
reflected in the larger gaps between lines representing different map sizes.

4.3. BENCHMARK RESULTS 15

Overall, the choice between ARRAY and PERCPU maps depends on the access pattern, map size,
and the number of cores. While PERCPU maps avoid write conflicts, their memory overhead can
reduce performance and scalability in cases with large memory access range and high memory
access diversity.

Chapter 5

Outlook

Evaluating an eBPF system is a complex task. Numerous factors can affect the performance of
eBPF-based applications, making it challenging to achieve optimal results. In this thesis, we evalu-
ated various factors, including attach points, the number of eBPF programs, eBPF map types, map
sizes, access patterns, and the number of CPU cores. When deciding to adopt eBPF technology to
accelerate a network application, it is essential to consider the specific use case, performance tar-
gets, computing resources, budget constraints, and to choose the appropriate approach for designing
eBPF programs.

Regarding future work, further benchmarking could be conducted across a broader range of
eBPF map types and configurations. For instance, we could compare performance under condi-
tions where the total map sizes remain constant while accounting for the number of CPU cores.
Additionally, exploring the simultaneous execution of eBPF programs attached at different points
and analyzing their potential interference could offer valuable insights for optimizing eBPF-based
systems. Furthermore, we could extend the evaluation to different network applications, each with
varying performance targets, to better understand the adaptability and effectiveness of eBPF in
diverse scenarios.

16

Chapter 6

Summary

This thesis explores the performance of eBPF-based applications in multi-core and networked en-
vironments. We developed a benchmark system to evaluate how configurations such as the number
of eBPF programs, eBPF map types, CPU allocations, and memory access patterns impact per-
formance. The study reveals trade-offs in latency, computing resources, and scalability, providing
valuable guidelines for designing efficient eBPF applications.

17

Bibliography

[1] Dpdk. https://github.com/DPDK/dpdk.

[2] k6. https://github.com/grafana/k6.

[3] libbpf. https://github.com/libbpf/libbpf.

[4] libbpf-rs. https://github.com/libbpf/libbpf-rs.

[5] Almesberger, W., et al. Linux network traffic control—implementation overview, 1999.

[6] Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A., Andrewartha,
M., Angepat, H., Bhanu, V., Caulfield, A., Chung, E., et al. Azure accelerated
networking:{SmartNICs} in the public cloud. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18) (2018), pp. 51–66.

[7] Høiland-Jørgensen, T., Brouer, J. D., Borkmann, D., Fastabend, J., Herbert, T.,
Ahern, D., and Miller, D. The express data path: fast programmable packet processing
in the operating system kernel. In Proceedings of the 14th International Conference on Emerg-
ing Networking EXperiments and Technologies (New York, NY, USA, 2018), CoNEXT ’18,
Association for Computing Machinery, p. 54–66.

[8] Hubert, B., et al. Linux advanced routing & traffic control howto. Netherlabs BV 1 (2002),
99–107.

[9] Liu, C., Tak, B., and Wang, L. Understanding performance of ebpf maps. In Proceedings
of the ACM SIGCOMM 2024 Workshop on EBPF and Kernel Extensions (New York, NY,
USA, 2024), eBPF ’24, Association for Computing Machinery, p. 9–15.

[10] McCanne, S., and Jacobson, V. The bsd packet filter: A new architecture for user-level
packet capture. In USENIX winter (1993), vol. 46, Citeseer, pp. 259–270.

[11] Messina, A. Analysis and Testing of eBPF Attack Surfaces. PhD thesis, Politecnico di
Torino, 2024.

[12] Miano, S., Bertrone, M., Risso, F., Tumolo, M., and Bernal, M. V. Creating
complex network services with ebpf: Experience and lessons learned. In 2018 IEEE 19th
International Conference on High Performance Switching and Routing (HPSR) (2018), pp. 1–
8.

[13] Scholz, D., Raumer, D., Emmerich, P., Kurtz, A., Lesiak, K., and Carle, G. Per-
formance implications of packet filtering with linux ebpf. In 2018 30th International Teletraffic
Congress (ITC 30) (2018), vol. 1, IEEE, pp. 209–217.

18

https://github.com/DPDK/dpdk
https://github.com/grafana/k6
https://github.com/libbpf/libbpf
https://github.com/libbpf/libbpf-rs

BIBLIOGRAPHY 19

[14] Thomadakis, M. E. The architecture of the nehalem processor and nehalem-ep smp plat-
forms. Resource 3, 2 (2011), 30–32.

[15] Vieira, M. A., Castanho, M. S., Paćıfico, R. D., Santos, E. R., Júnior, E. P. C.,
and Vieira, L. F. Fast packet processing with ebpf and xdp: Concepts, code, challenges,
and applications. ACM Computing Surveys (CSUR) 53, 1 (2020), 1–36.

	Introduction
	Motivation
	Task and Goals
	Overview

	Background and Related Work
	Background
	Extended Berkeley Packet Filter
	eBPF Hooks
	eBPF Maps
	Cache Coherence

	Related Work

	Design
	Benchmark System Architecture
	eBPF Program Chain
	eBPF Program Interference
	Scaling with eBPF Programs and Maps
	Scaling with CPU Cores

	Evaluation
	Benchmark Setup
	eBPF Program Triggering
	Benchmark Results
	Scaling with eBPF Programs
	Scaling with eBPF Map Size
	Scaling with CPU Cores

	Outlook
	Summary
	References

