
Towards a better understanding of FIB
architectures

Semester Thesis

Author: Tim Distel

Tutor: Lukas Röllin

Supervisor: Prof. Dr. Laurent Vanbever

February 2025 to June 2025

Abstract

Modern routers need to operate at extremely high speeds while maintaining increasingly large For-
warding Information Bases (FIBs). However, most routers are black boxes and it is difficult to
obtain meaningful insights from them and detect potential bottlenecks. This thesis presents the
Fibulator, a modular and extensible simulation environment designed to test and analyze hard-
ware forwarding implementations, focusing on Longest Prefix Matching (LPM) algorithms. By
replicating key aspects of hardware forwarding, the Fibulator aims to bridge the gap between the
development of novel algorithmic ideas and practical hardware implementation. As a proof of
concept, a variable-stride trie algorithm is implemented and evaluated.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Task and Goals . 2
1.3 Overview . 2

2 Background 3
2.1 Internet Routing . 3
2.2 LPM Implementations . 4

2.2.1 Tries . 4
2.2.2 Hardware Implementation . 5

3 Design 7
3.1 Overview . 7
3.2 Architecture . 8

3.2.1 Data Plane . 8
3.2.2 Control Plane . 9

3.3 Data Collection . 9

4 Implementation 10
4.1 Code Organization . 10

4.1.1 Fibulator . 10
4.2 Event Data Structure . 11
4.3 Ownership Model . 11
4.4 Key Components . 12

4.4.1 Simulation . 12
4.4.2 Planes . 12
4.4.3 Memory Components . 13

4.5 Variable-Stride Implementation . 14
4.5.1 Configuration . 14
4.5.2 Control Plane . 14
4.5.3 Data Plane . 15

4.6 Utilities . 16
4.6.1 Bits Representation . 16
4.6.2 IP Addresses and Prefixes . 17
4.6.3 Memory Logging . 17
4.6.4 CSV Input and Output . 17
4.6.5 Debug Printing . 18

ii

CONTENTS iii

5 Evaluation 19
5.1 Variable-Stride Implementation . 19

5.1.1 Space-Filling Curves . 19
5.1.2 Experimental Setup . 20
5.1.3 Real-World FIB Distribution . 21
5.1.4 Impact of Stride Configuration on Memory Usage 23
5.1.5 Memory Access Patterns . 27

5.2 Fibulator Performance . 30

6 Summary and Outlook 31

References 32

A Build and Execution Workflow I

Chapter 1

Introduction

1.1 Motivation

Routers are a cornerstone of today’s Internet and they become increasingly faster while simultane-
ously having to maintain ever-growing forwarding tables. Modern routers and switches can achieve
throughputs on the order of terabits per second (Tbps), which corresponds to multiple packets
being forwarded per nanosecond. To achieve such high throughput, the data plane must rely on
specialized hardware components. However, due to the proprietary nature of many routers, only
little is known about their internal hardware architectures. It can be hard to obtain meaningful
insights and detect potential bottlenecks from such black boxes.

A router maintains a Forwarding Information Base (FIB), which can be described as a large lookup
table that maps different destination IP prefixes to corresponding egress ports of a router. The
FIB should be structured in such a way that it allows for high-speed forwarding of packets, while
also enabling fast updates of entries. The Border Gateway Protocol (BGP) relies on preferring
longer, more specific, prefixes to shorter ones. This leads to one of the main algorithmic challenges
in designing a forwarding implementation, called Longest Prefix Matching (LPM). To efficiently
perform LPM, most algorithms are implemented as a hardware pipeline, based on the logical model
of a trie [9]. However, this model still leaves much room to fine-tune and optimize a hardware LPM
implementation.

The growing sizes of FIBs are a problem because the capacity of memory components that allow the
required forwarding speeds is very limited. Hence, it is important to find potential optimizations of
existing solutions. There exist many approaches to reduce the size of a FIB. For example, ORTC
[2] tries to compress a FIB by reordering and merging entries with the same next-hop. An other
example is DRAGON [4], which aims to minimize FIBs on an even higher level by simplifying the
global Routing Information Base (RIB). PopTrie [1] is an example of an algorithm that aims to
speed up in-software implementations of forwarding. The focus of this thesis lies on the implemen-
tation of LPM in hardware using a pipeline design. It is further assumed that the FIB itself stays
more or less fixed. The goal is to find ways to efficiently represent pre-existing FIBs in hardware.

1

1.2. TASK AND GOALS 2

At the time of writing this thesis, it is difficult to try out and assess different data plane hardware
implementations. Actually implementing a design in hardware is both time-consuming and costly.
This is why in this thesis, a simulation environment called the Fibulator is presented that focuses
on analyzing different in-hardware forwarding implementations. This allows for a time-effective
analysis of new implementation ideas and might catch design weaknesses early on. The Fibulator
can also be used to gain a better understanding of existing hardware implementations.

1.2 Task and Goals

The main task of this thesis is the development of the Fibulator, a modular and extensible envi-
ronment to test and analyze different LPM hardware implementations. Due to the high cost of
prototyping in-hardware implementations, this simulation environment should enable a more ac-
cessible way of quickly testing different architectural ideas.

As a proof of concept, this thesis includes the implementation and evaluation of a variable-stride
trie algorithm. Even for this rather simple model, valuable insights regarding memory usage and
access patterns can be gained. This should demonstrate the utility of the simulation environment
provided by the Fibulator.

1.3 Overview

Chapter 2 covers the necessary background for this thesis. This includes the basics of longest prefix
matching as well as common approaches for in-hardware LPM implementations.

In Chapter 3, an overview of the Fibulator is given. It highlights the most important architectural
decisions and key components. Following this, Chapter 4 goes into more detail regarding the actual
implementation of the Fibulator.

Chapter 5 demonstrates the capabilities of the Fibulator through the example of a variable-stride
trie implementation. It also presents performance metrics of the Fibulator.

Finally, Chapter 6 provides a short summary of the thesis as well as an outlook on potential future
work.

Chapter 2

Background

This chapter provides the necessary background for this thesis. This includes the basics of Internet
routing and the resulting challenge of longest prefix matching. It also presents common approaches
to implement LPM in hardware.

2.1 Internet Routing

The Internet uses Internet Protocol (IP) addresses to route packets to a chosen destination. Those
IP addresses can be grouped into different prefixes, also called networks. The so called prefix
length determines, how many of the first bits, starting from the most significant bit, make up the
respective prefix. Addresses that match those first bits are said to belong to the same network or
prefix. This thesis uses the following octet notation for a 32-bit IPv4 prefix: 123.45.67.0/24 where
the integer after the ”/” indicates the prefix length. The example above maps to a network with
2(32−24) − 2 host addresses, ignoring the first address (network address: 123.45.67.0) and the last
address (broadcast address: 123.45.67.255).

Using prefixes can simplify the definition of a desired routing behavior. This stems from the fact
that two destination addresses that need to be forwarded to the same egress can be grouped to
one prefix and only require a single entry. The same applies for consecutive prefixes with the same
egress that can be merged into a larger prefix. The Internet relies on the premise that longer, more
specific, prefixes are preferred over shorter ones. This leads to an algorithmic challenge that is
quite unique to networking: Longest Prefix Matching.

Routers keep a lookup table of many forwarding entries, also called the FIB. A forwarding entry
can be described as a pair of a prefix and a corresponding egress port of a router. Usually, routers
use the abstraction of two different planes: the data plane (also known as forwarding plane) and
the control plane. The task of the data plane is to forward packets as fast as possible. In order to
achieve this, it stores the FIB in an optimized structure to allow efficient in-hardware forwarding.
On the other hand, the control plane is responsible for the RIB. The RIB represents higher level
routing decisions that do not need to be as fast as the data plane. This includes, for example, BGP
updates and modifying the entries in the data plane accordingly.

Nowadays, routers have FIBs with more than one million entries, spanning many different prefix
lengths. Especially as routers are required to forward packets at even faster speeds and FIBs
continue to grow larger, efficient LPM implementations become increasingly important. The goal

3

2.2. LPM IMPLEMENTATIONS 4

of an LPM algorithm is to efficiently find the longest prefix, i.e., the most specific network to which
the destination address of an incoming packet belongs to.

2.2 LPM Implementations

Modern routers are capable of a throughput of multiple Tbps while maintaining FIBs with over
one million prefixes. For example, a new switch from FS [3] supports a forwarding rate of 22’200
Mpps. This corresponds to performing more than 22 lookups per nanosecond! To achieve such
a performance, in-software approaches are infeasible. Instead, specialized forwarding hardware is
used.

2.2.1 Tries

A common strategy for efficiently storing FIBs are tries. The simplest implementation would be a
binary trie, comparing each individual bit of an address until a leaf node, which corresponds to an
egress, is reached. One disadvantage of this naive approach is that in the worst case it would take
32 memory accesses to forward an IPv4 packet since each of the individual bits could have to be
checked. The number of sequential memory accesses needed for a lookup give a very good estimate
on the latency of an LPM implementation [6, Chapter 11].

Figure 2.1: An example of a binary trie with the corresponding forwarding behavior.

One approach to reduce the number of levels in a trie, and hence the worst-case number of memory
accesses needed for a lookup, is to group the bits into segments, also called strides. A possible
implementation could be to use a constant stride of 4, meaning that an IPv4 address containing
32 bits is split into 8 bit segments of length 4. Other than in a binary trie, this N-ary trie now has
24 = 16 children (each combination of the 4-bit strides) per node. This reduces the depth of the
trie to 8. In general, using longer strides reduces the latency, which corresponds to the worst-case
number of memory accesses, but also increases the memory needed to store a given FIB. There are
two main reasons for the increase in memory usage:

1. Not all prefixes fit into a stride configuration. For example, 128.0.0.0/7 does not fit into a
constant-stride 4 trie. To deal with this problem, the prefix needs to be extended, i.e., split

2.2. LPM IMPLEMENTATIONS 5

into two equivalent longer prefixes, until it fits into the strides. In this example 128.0.0.0/7
needs to be extended to 128.0.0.0/8 and 129.0.0.0/8 which then fits into the strides. Obviously,
this can lead to more entries, especially if the strides are not well-aligned with the majority
of the FIB entries.

2. For the algorithm to work correctly, the trie requires to be normalized, i.e., each node must
have either zero or 2N children, where N is the size of a stride. This means that even if many
children point to the same egress, all the memory cells need to be populated. Hence, the
normalization cost grows exponentially with the length of the stride.

A generalization of the constant-stride trie is the variable-stride trie. This type of trie allows for
strides to have different lengths. An example for an IPv4 trie would be a stride configuration of
[8, 8, 4, 4, 8]. The individual strides need to sum up to a total of 32 bits.

There are many different strategies to further reduce the latency and memory footprint of LPM
implementations. For further details, the reader is referred to [6, Chapter 11].

2.2.2 Hardware Implementation

In hardware, a trie can be implemented as a pipeline. Each stage of the pipeline represents one level
of the trie. Each stage contains some processing logic and one (or multiple) memory components
where the entries of the nodes are stored. The two most relevant memory components in practice
are Static Random-Access Memory (SRAM) modules and Ternary Content-Adressable Memory
(TCAM) modules.

TCAM

TCAMs belong to the family of Content-Addressable Memories. This means that instead of retriev-
ing an entry by its address, an entry can be accessed by its content. A TCAM module can search all
of its entries in parallel and is able to retrieve matches in only one cycle. Ternary refers to the fact
that a TCAM supports three possible states per bits, also allowing don’t-care bits. This is usually
implemented as a second equally sized entry that serves as a bit-mask. Therefore, prefixes can be
naturally stored as entries, where all the bits that belong to the host address-space of a network
can be set to don’t care. This makes a TCAM an ideal candidate to be used for hardware LPM
implementations, as it allows LPM lookups to be performed in only one cycle. However, simply
using one big TCAM to store an entire FIB comes with two major downsides:

1. Power Consumption and Area Overhead: Storing one bit in a TCAM requires around
16 transistors, whereas SRAM typically only requires 6 transistors per cell. This leads to
higher power consumption and worse storage density. Additionally, for the parallel search,
each cell needs to be activated, leading to an even higher power consumption compared to an
SRAM module.

2. Slow Updates: Depending on the implementation, a TCAM module typically returns the
result for the first match of a lookup. This implies that for a correct LPM lookup, prefixes
must be stored from longest to shortest prefix length in a TCAM. Hence, inserting a single
entry has a cost of O(n) since it might require shifting many entries.

2.2. LPM IMPLEMENTATIONS 6

SRAM

An implementation purely based on SRAM is also possible. This can be achieved by building a
trie structure in hardware in the form of a pipeline consisting of one stage per level.

Figure 2.2: Simplified hardware implementation of a trie with constant stride of 2.

Figure 2.2 shows a simplified example of an in-hardware LPM lookup for 4-bit addresses. The
pipeline has two stages with a constant stride of 2 which means that each stage checks 2 bits of
the destination address. An entry of the SRAM module can be either an egress or a pointer to a
memory block in the next stage. For example, a packet with address 0b0101 gets its egress already
set to A in the first stage by accessing the cell that corresponds to its first two bits. On the other
hand, a packet with address 0b0010 needs to traverse to the second stage with base address 0x10
where it then gets its egress set to B. In the second stage, bits 2 and 3 are used as an offset to
obtain the actual memory address. The actual address accessed in the second stage would be 0x12
which is omitted in the graphic for simplicity. It is also assumed that each memory entry, holding
either an egress or a pointer to the next stage, has a consecutive address assigned.

This relatively straight-forward implementation requires the underlying trie to be normalized, mean-
ing that a node has either zero children, i.e., is an egress or has all 2N children, where N is the size
of the stride. This comes from the fact that all possible combinations of bits in a given stride must
map to a valid SRAM address.

Hybrid approaches, combining both TCAM and SRAM modules, are popular in practice. This
can be achieved by, for example, implementing a basic trie structure using SRAM modules and
beneficially adding TCAM modules to certain stages.

Chapter 3

Design

This chapter provides an overview of the intended simulation flow of the Fibulator. It highlights
key design decisions and the fundamental building blocks.

3.1 Overview

The Fibulator provides a modular and extensible environment to simulate and test different FIB
hardware algorithms. The core logic of the Fibulator is split into two parts: the control plane and
the data plane. This design choice was made because real-world implementations generally follow
this abstraction as well.

Figure 3.1: Simplified program flow of the Fibulator.

Figure 3.1 shows a simplified execution flow of a simulation using the Fibulator. The event queue
serves as a predefined input to the Fibulator. There are two types of events: control instructions,
which are processed by the control plane and packets, which are forwarded by the data plane
through its pipelines.

The Fibulator, as the name suggests, focuses on the FIB and the implementation of a correct
forwarding algorithm. That is why it was decided that control instructions are considered to be
fairly low-level instructions concerning the FIB, as, for example, inserting, removing or updating

7

3.2. ARCHITECTURE 8

a single FIB entry. The underlying RIB decisions are outsourced into the setup of the simulation
by preparing an intended sequence of control instructions in the event queue to emulate certain
higher-level behavior.

3.2 Architecture

3.2.1 Data Plane

The basic model chosen for the hardware implementation in the data plane is that of a pipeline.
It is assumed that most in-hardware FIB implementations can be represented as a pipeline archi-
tecture, leading to no heavy restrictions on implementing different approaches. This model leads
to a natural time representation in the Fibulator: one cycle, which is equal to the simulated la-
tency of a single stage. Making the simulation event-based, i.e., processing one packet at a time
was considered as well, but the cycle-based approach using a pipeline model was preferred due to
its clear structure and time representation. It is further assumed that each stage contains some
in-hardware logic (which will also be referred to as the stage function) and one or multiple memory
components. These could, for example, be TCAM or SRAM modules. The latency for one stage
and hence the duration of a single cycle is estimated to be the read-latency of the corresponding
memory components.

Figure 3.2: Pipeline representation in the Fibulator.

To test a proposed algorithm, the user is supposed to provide his own implementation of the data
plane. This includes three main design decisions:

1. Pipeline Configuration: This includes defining, how many and what pipelines (e.g. IPv4
and IPv6) are used and how many stages the individual pipelines contain. Additionally,
memory components with pre-defined properties need to be assigned to the corresponding
stages.

2. Stage Behavior: This aspect characterizes the stage function. It includes, for example, the
specification of the stride of a stage and how a stage interacts with its memory components.

3. Data Plane On-Cycle Behavior: This embodies all the decisions the data plane makes
on a cycle-basis. It is necessary to define how incoming packets are buffered, through which
pipeline they are forwarded, and how memory requests from the control plane are processed
and timed.

3.3. DATA COLLECTION 9

Memory Components

In addition to the user-defined implementation of the data plane itself, specific memory components
can also be implemented. Those memory components can then be used in the different stages of a
pipeline. The current version of the Fibulator already provides an implementation for TCAM and
RAM modules.

3.2.2 Control Plane

In contrast to the data plane, the control plane does not need to be as fast in practice. Generally,
the control plane logic is executed on a normal processor. As described above, the control plane
is supposed to handle the incoming control instructions, such as, for example, inserting a new FIB
entry. To achieve this, the control plane maintains a simplified model of the data plane. From
this model and a control instruction, it produces memory requests which are then sent to the data
plane. A memory request contains the exact memory component, the address, and the new value of
the entry that needs to be updated. This mechanism involving memory requests is used to provide
a clear separation of the data plane and the control plane.

Similarly as in the data plane, the user has to provide his own implementation of a control plane
in order to test a proposed algorithm. This implementation needs to cover three main aspects:

1. FIB Representation: This defines the logical model of how the FIB is stored in the control
plane. A possible representation is a variable-stride trie, as discussed in Section 2.2.

2. Generate Memory Requests: This aspect defines a mapping from the logical FIB model
to actual memory entries that need to be written to the data plane pipelines.

3. Control Plane On-Cycle Behavior: For simplicity, both the data plane and the control
plane are executed once per simulated cycle. One way to handle control plane latencies is
to outsource them into the setup of the event queue. Events can occur with a delay and are
then processed instantaneously by the control plane.

3.3 Data Collection

The current version of the Fibulator provides two approaches to collect data in a simulation. The
first method involves the forwarded packets. Relevant metrics can be attached to a packet while it
traverses the pipeline, and can later be analyzed. The second approach focuses on memory-related
statistics. The user can save the current state of a memory component to a file. This can contain
metrics such as the number of bits currently used or the ratio of different entry types a component
holds.

Both approaches offer valuable insights but target different aspects of the simulation. They can be
used independently or in combination, depending on the goals of the analysis.

Chapter 4

Implementation

This chapter discusses the implementation details of the Fibulator, including its structure and how
the different components are implemented and interact with each other. It also highlights the
reasons behind some key implementation decisions.

4.1 Code Organization

In order to be able to efficiently handle large FIBs and long packet traces, the core simulation of
the Fibulator is written in C++. The project is compiled with C++ 17. However, to simplify
the overall simulation process, a Python wrapper has been implemented which automatizes the
configuration and build process of the Fibulator. The analysis and visualization of the simulation
output is handled in Python as well. This aims to make the configuration and evaluation workflow
more user-friendly. The project is organized into four main directories:

1. inputs: This directory contains the input files required for a simulation. Typically, it contains
a FIB and a packet trace.

2. outputs: The results generated by the Fibulator are stored in this directory. This includes
the forwarded packets as well as the memory statistics.

3. python: This folder holds the Python utilities which can be used for the setup of a simulation
and the evaluation of its output.

4. src: This directory contains the C++ source code of the Fibulator. The main focus of this
chapter lies on this implementation.

4.1.1 Fibulator

The Fibulator itself, meaning the C++ implementation, is divided into 6 subdirectories: algorithm,
base, control plane, data plane, memory and util. The algorithm directory contains the code
for the algorithm that is to be implemented by the user. This aims to strictly separate the user im-
plementation from the base structure of the Fibulator. Multiple components of the other directories
will be explained in more detail in the following sections.

10

4.2. EVENT DATA STRUCTURE 11

4.2 Event Data Structure

This section describes the most important data structure in the Fibulator: events. Events are
implemented as a hierarchical structure and include packets and, for example, the insertion of a
FIB entry. The main idea is that pointers to the event objects are passed instead of passing the
events by value. This has two main advantages: Firstly, moving pointers is cheap, i.e., there is
no need to copy potentially big events, and secondly, the usage of pointers allows for polymorphism.

All events in the Fibulator are derived from the IEvent abstract class. It follows the ”I” prefix
notation, which is further described in section 4.4. The most important attribute of an event
is time in, which defines when it gets processed in the simulation. In addition, it contains an
EventType which determines whether it is a control instruction or a packet.

Figure 4.1: Hierarchy of the event data structure.

Figure 4.1 shows the inheritance model of the different types of events used in the Fibulator. The
main advantage of using polymorphism is that it simplifies the handling of different types of events
and allows for more modularity and extendability. As a result, the simulation only needs to hold
one event queue that contains all future events. As soon as an event occurs, it gets casted to a
more specific type and pushed to the corresponding queue: IEvents of derived type IPacket get
pushed into the packet queue of the data plane and events of derived type IControlInstruction

get pushed to the control plane queue. This naturally leads to a hierarchy, such that each com-
ponent receives an object that is just as specialized as it needs to be in order to be processed. It
also enables the user to derive new types from the IControlInstruction and IPacket classes. In
the current version of the Fibulator, only IP packets (IpPacket class) and FIB entry insertions
(ControlInsert class) are used.

However, handling events as pointers introduces a new challenge: determining who owns the object
being pointed to. This information is relevant when we do not want to allow, for example, dangling
pointers and other potentially dangerous ambiguities. The next section describes how correct
ownership is ensured in the Fibulator project.

4.3 Ownership Model

A clear and intuitive ownership model was chosen, utilizing smart pointers in a modern C++ fash-
ion. More specifically, std::unique ptr are used to pass events from one component to another.
In this way, it is ensured that the ownership is always safely passed to the component that currently

4.4. KEY COMPONENTS 12

handles an event. Apart from more robust code, this implementation also allows for more flexibility.
In particular, a component can safely delete an object it owns and free up unnecessary memory.
This can, for example, be useful if stages are allowed to drop packets.

This ownership model is not limited to the events that propagate through the Fibulator. It is also
applied to all components containing, or more precisely owning, other components. For example,
each stage owns its memory components. The most important components are further described
in the next section.

4.4 Key Components

In order to achieve modularity, the Fibulator is divided into different components. Most components
are structured as a hierarchy of classes with an abstract base class as the root, because this allows
for an easy way to implement a new component that fits seamlessly into the Fibulator. For brevity
and to emphasize that those classes cannot be instantiated, the code base uses the prefix ”I” to
mark those abstract base classes. However, to avoid confusion, it is important to note that those
abstract base classes are technically not interfaces, since they do contain member variables and
non-virtual functions.

4.4.1 Simulation

The Simulation class is the foundation of the Fibulator. This class contains both the control plane
and the data plane. It keeps track of the simulation time and calls the cycle function of its members
during each cycle. In addition, it handles the processing of the event queue. Each event that has
a time in smaller or equal to the simulation time is casted to a more specific type and added to
either the data plane or the control plane queue.

4.4.2 Planes

Both the control plane and the data plane are implemented as an abstract base class, namely
IControlPlane and IDataPlane. Those base classes only provide the minimal functionalities.
This should ensure that the user-provided algorithm can be implemented as freely as possible while
still providing some basic structure.

Control Plane

The abstract base class IControlPlane holds a std::queue of IControlInstructions. Addition-
ally, it contains a DataPlane Model instance. This data plane model provides a simplified view of
the memory components of the data plane and can be used to keep track of the current state in the
pipelines. This additional structure is used to maintain a clear separation of the two planes and
does not require the control plane to access the memory components in the data plane.

Data Plane

The IDataPlane base class contains a std::queue for both incoming packets and memory requests.
In addition, it holds the hardware components, which are structured as a hierarchy of multiple
pipelines containing multiple stages:

4.4. KEY COMPONENTS 13

1. Pipelines: Each instance of the Pipeline class contains a std::vector of stages. The
pipeline cycles each individual stage from last to first. The stages are called from last to first
because each stage writes its output to the input of the next stage at the end of a cycle. In
every cycle, a pipeline returns the packet that is outputted from its last stage.

2. Stages: Each instance of the Stage class contains a std::vector of IMemoryComponents
and a std::function<void(Stage&)> which serves as the stage function. It was decided
to use the std::function wrapper that uses a reference to its stage as its only parameter,
because it allows a stage function implementation to be reused across different stages while
also providing maximum flexibility.

At the end of each cycle, the data plane returns all forwarded packets, i.e., all packets that were
returned from its pipelines.

4.4.3 Memory Components

Following the same methodology as used for the control plane and the data plane, memory com-
ponents are derived from an IMemoryComponent base class. Among others attributes, memory
components contains two integers defining the number of bits of a key, i.e., address and the number
of bits of an entry. The size of an entry was chosen to be variable in order to potentially simplify
accessing the data and making the implementation of an algorithm clearer. IMemoryComponent

also implements IMemoryLogger which is further described in Section 4.6.3.

The Fibulator already contains two implementations of memory components: TCAM and RAM.
However, if needed, additional memory components can be easily added by deriving a new special-
ization from the IMemoryComponent base class.

RAM

The content of a RAM module is stored as an std::unordered map from an address, stored as a se-
quence of bits using the Bits class (further described in section 4.6.1) to a RAMCell. Each RAM cell
contains a value that is also stored as a Bits instance. The decision of using a std::unordered map

was made because RAM modules can be sparsely populated, which would lead to a lot of wasted
memory in the simulator if all cells were stored in a std::vector. Only storing used, i.e., valid
cells in a std::vector would lead to an unnecessary search complexity for a given address. Using
std::unordered map seems to be a good compromise regarding insertion and lookup complexity
as well as storage overhead. The current implementation supports reading and writing cells to a
given address.

TCAM

The TCAM module stores its cells as a std::vector of TCAMCells. A std::vector was chosen
since TCAMs are considered to be smaller and more densely populated than RAM modules. Each
TCAMCell contains a key and a key mask, stored as Bits instances, and a value. The TCAM
implementation supports lookup, read and write functionality.

It is intended, that first a lookup for a certain key is made, which returns the indices of all cells that
match the content. This lookup, which normally happens in parallel for a hardware implementation,
is implemented as a simple linear search of all entries in the TCAM. The hash maps used for a

4.5. VARIABLE-STRIDE IMPLEMENTATION 14

std::unordered map do not support don’t-care bits that are required for TCAMs. This necessity
of a linear search is another reason why std::vector was chosen as the container. There might be
more efficient approaches to perform TCAM-like lookups in software but this was not considered
to be a relevant bottleneck in the Fibulator. After the lookup, the value of the desired cell can be
read with the obtained index.

4.5 Variable-Stride Implementation

To provide a guiding example of how an algorithm can be implemented in the Fibulator environ-
ment, this section describes an implementation using a variable-stride trie. The implementation is
split into three main parts: the configuration, the data plane and the control plane.

4.5.1 Configuration

All parameters related to the definition of the data plane are kept in one algo config.h file to pro-
vide a clear separation of all configuration parameters. This includes, for example, the number of
egress ports of the simulated router and the different stage configurations. A StageConfiguration

contains the stride, i.e., the number of bits a stage handles and the type of its memory components.
This implementation only uses one SRAM module per stage. The SRAM modules are further
defined by their number of entries as well as the length of an address and the number of bits stored
in one entry.

Additionally, it specifies the file paths for reading the input data (packets and FIB entries) and
writing the output data (forwarded packets and memory logs). Currently, the Python wrapper is
set up in such a way that a C++ configuration file is automatically generated from the parameters
set in Python.

In a separate file, the memory layout of an SRAM cell is defined. This serves as an additional
abstraction layer to make accessing the different entries of the SRAMmodules clearer. This memory
layout defines which bits of an SRAM entry map to what variable. As described in section 2.2.2,
each entry can be either an egress or a pointer to an block in the next stage. A cell has a big enough
capacity that it can contain either values. We need an extra variable is egress in the form of a
single bit that determines whether a given cell is an egress or a pointer entry.

4.5.2 Control Plane

In each cycle, the control plane collects all events in its control instruction queue. In this imple-
mentation, only FIB insertions are used. As soon as a certain threshold of pending insertions is
reached, update fib is called, which can be split into three main tasks:

1. Update Trie: The control plane holds a list of all FIB entries in the form of a std::set,
sorted by prefix length. First, the set of FIB entries is updated according to all pending
changes. Then, the current variable-stride trie is cleared and rebuilt from the new state of
the FIB set.

2. Map Trie to Memory Requests: After constructing this initial version of the trie, it is
normalized. This means that every node of the trie must have either zero or 2N children,
where N is the stride of the respective level. This normalized trie is then used to obtain a
sequence of memory requests that is equivalent to the trie. Those requests are obtained by

4.5. VARIABLE-STRIDE IMPLEMENTATION 15

processing the trie in a breadth-first manner. Each level maps to a set of memory requests
for its corresponding stage in the data plane.

3. Send Memory Request to Data Plane: Finally, the memory requests are compared to the
simplified data plane memory representation stored in the control plane. This process filters
out unnecessary memory requests, meaning SRAM entries in the data plane that already hold
the correct values. The remaining memory requests are then sent to the data plane and the
internal data plane model is updated.

This implementation aims to be as simple as possible while still providing a clear structure that can
be used as a template for other algorithms. A possible improvement would be the implementation of
a variable-stride trie that is capable of handling incremental updates. The current implementation
allows for incremental inserts, but upon deleting a single entry, the whole trie needs to be rebuilt to
ensure correctness. Another improvement could involve ensuring that the number of issued memory
requests is minimized by incorporating the current state of the data plane into the memory request
generation and not just checking for potentially redundant requests.

4.5.3 Data Plane

Pipeline Configuration

To handle the setup process of a data plane according to its configuration, it is recommended to use
a factory design pattern. The create dataplane factory function creates an instance of the spe-
cialized data plane implementation and returns it as a pointer to a IDataPlane base class. Through
this base pointer the ownership of the data plane can then be transferred to the Simulation class.
The IDataPlane base pointer exposes all functionalities required by the Simulation class. All the
logic related to building a correct data plane from a given configuration is therefore confined to
this function. This includes creating instances of the different memory components, adding them
to the correct stages, and adding those stages to the correct pipelines.

Stage Behavior

The stage function is implemented as described in Section 2.2.2. The stage function has a reference
to its own stage as its only parameter. This allows the function to change its behavior according to
the properties of its stage, which makes it possible to reuse one general stage function for multiple
stages. The next ptr is handled the following way in this hardware implementation: each packet
contains a metadata structure, which contains a field next mem base. So instead of following the
pointer value, a stage writes the base address of the next memory block into this field and then
forwards the packet including the metadata to the next stage.

When a packet arrives in a stage, at first, the next mem pointer is extracted from the metadata.
This address, combined with the offset given by the current stride, results in the relevant SRAM
address that needs to be accessed by a stage. This memory address is then read and handled
according to two cases:

1. Egress: If the memory entry is an egress entry, the egress port of the packet gets set in its
metadata. All subsequent stages ignore this packet that has its egress already set and simply
forward the packet to the next stage without further modifying it.

2. next ptr: The stage writes the value of the pointer to the metadata of the packet and
forwards it to the next stage.

4.6. UTILITIES 16

Apart from the metadata, a packet also contains a statistics structure. This structure can be used
to track relevant properties of the forwarding behavior. These additional statistics can later be
used in the evaluation of a simulation. In the current version, the stage index, at which the egress
of a packet was set, as well as the memory address of the corresponding egress entry, are attached
to the packet.

4.6 Utilities

This section describes various smaller components and utilities of the Fibulator.

4.6.1 Bits Representation

An important design decision was determining how to implement a generic memory abstraction
that is capable of representing the bits that are stored in the different memory modules. To achieve
maximum flexibility, this memory container should allow for single-bit granularity. In C++, two
promising approaches come to mind: std::vector<bool> and std::bitset<N>. However, both
have their pros and cons as shown in Table 4.1.

std::vector<bool> std::bitset<N>

Pros - Supports dynamic size
changes at runtime

- Small memory and performance
overhead
- Supports useful operators for
equally-sized bitsets

Cons - Memory and performance
overhead
- No out-of-the-box operators
between two instances with
equal length

- Size needs to be known at
compile-time
- Many template instantiations
for different sizes
- Leads to code that is hard to
write and verbose

Table 4.1: Comparison of std::vector<bool>
and std::bitset<N>

Using std::bitset<N> would be desirable due to its many already implemented functionalities
and its small overhead. However, during development it became clear that the size of a bitset hav-
ing to be known at compile-time imposes too many restrictions. In particular, the code becomes
very verbose due to many template usages. That is why it seemed beneficial to implement an own
Bits class that aims to embody the desirable properties from both options.

The Bits class uses a std::vector of bytes (uint8 t) as its internal data representation. The
individual bits are stored in a compact way by converting sequences of 8 bits to one byte. The
size of a Bits instance can be changed at runtime by resizing the std::vector. It exposes many
functionalities and operators that would be available for two equally-sized std::bitsets, as, for
example, bitwise AND or flipping bits at certain indices.

However, the Bits class is not complete and could be further extended in future work if additional
features are required. We suspect that a big portion of the Fibulator’s memory usage stems from

4.6. UTILITIES 17

a suboptimal way of storing Bits instances. Each simulation uses multiple memory components
containing many entries, typically resulting in a total of more than one million entries. Usually, an
entry consists of fewer than 100 bits and is internally represented as a Bits instance. Each of those
Bits instances handles its content with a std::vector that is allocated on the heap. The large
number of small heap allocations might cause fragmentation and lead to inefficient memory usage.
Since the Fibulator was still able to run on a standard commercial machine while simulating real
world FIB sizes, addressing this issue was not prioritized.

4.6.2 IP Addresses and Prefixes

The Fibulator project contains lightweight IPv4Helper and IPv6Helper classes to simplify the
handling of IP addresses in C++. This includes, among other things, converting IP addresses from
a string to a Bits representation and vice versa. All IP addresses are stored as Bits instances with
sizes 32 and 128 for IPv4 and IPv6, respectively.

Also included are utilities to handle prefixes (or networks). A prefix is stored as two Bits instances.
The first one holds the actual address and the second, equally-sized one, is used as a mask according
to the prefix length. This implies that checking if an address belongs to a certain prefix can be
done by checking equality after applying the mask with bitwise AND to the address in question.

4.6.3 Memory Logging

To provide modular data collection capabilities, all memory components are required to implement
the IMemoryLogger. This memory logger expects the snapshot functionality of a memory compo-
nent to be implemented. A snapshot of a memory component contains, for example, the number
of bits currently used and the number of reads and writes a component has handled yet. A user
can add more metrics to a snapshot according to his needs when evaluating a simulation.

The resulting memory log of a snapshot is structured hierarchically. Each component from the data
plane, down to the individual pipelines, stages and memory components, recursively generates its
memory log by requesting all children logs and aggregating them to their own log. This memory
log structure can be saved to a file and later analyzed in the evaluation process.

4.6.4 CSV Input and Output

All inputs and outputs from and to the Fibulator are handled in the Comma-Separated Values
(CSV) format. This format was chosen because of its simplicity that allows for a straightforward
way of serializing and parsing objects.

Serialization

Serialization is handled by the ISerializable interface. Every object that should have CSV
serialization capabilities needs to implement this interface. This includes defining either of the
following functionalities:

1. serialize item: This function is used for the serialization of simple data structures that
can be serialized to a single line in a CSV. For example, each packet corresponds to one row
of a CSV.

4.6. UTILITIES 18

2. serialize: This function is used for more complex data structures if the representation of
an object in a single row is not possible. An example is the recursive MemoryLog structure
from section 4.6.3.

Parsing

In order to be able to parse an object from a CSV, the object in question needs to implement a
static parse item function. This function serves as a factory function to construct an object from
a std::vector of strings, i.e., a row of a CSV.

4.6.5 Debug Printing

The Fibulator contains a simple debug printing mechanism. The debug.h file in the util directory
contains different debugging definitions to enable or disable debug printing for a given component.
This allows for an easy toggling of debug printing in a desired part of the Fibulator.

Chapter 5

Evaluation

This chapter presents the results obtained from a variable-stride trie, implemented as a proof of
concept of the Fibulator. All results in this section are based on IPv4 addresses, but the same
experiments could be performed for IPv6. In addition, it contains a short performance benchmark
of the Fibulator.

5.1 Variable-Stride Implementation

This section presents the insights that can be gained using Fibulator simulations. The variable-
stride trie implementation, as described in Section 4.5, is used to run the simulations. The analysis
of the forwarded packet traces and the memory statistics is performed in Python. The code used
for the evaluation of the simulations can be found in the python directory of the Fibulator project.

The following three questions will be discussed in the following sections.

1. How is a typical FIB structured with respect to different prefix lengths and overall distribu-
tion?

2. How do the number of stages in a pipeline and the stride configuration impact the memory
required to store a FIB in a variable-stride trie hardware implementation?

3. What access patterns occur in the different memory components during the forwarding of a
typical traffic trace?

Especially the second and the third research questions can be analyzed using Fibulator simulations.
The first question is primarily intended to allow for a better contextualization of the other two
questions. Before diving into more detail, a very useful visualization technique, used in this chapter,
is presented: space-filling curves.

5.1.1 Space-Filling Curves

Visualizing an entire FIB or an IP address space in general can be challenging because of the poten-
tially large ranges involved. The IPv4 standard contains 232 (roughly 4 billion) possible addresses,
which is too few for the entire Internet, but still too many to be visualized on a one-dimensional
plot. Luckily, space-filling curves [8] can be used to map one-dimensional data series like IP ad-
dresses to a two-dimensional image representation.

19

5.1. VARIABLE-STRIDE IMPLEMENTATION 20

Figure 5.1: 4-bit example of a Morton curve, mirrored along the x-axis, (left)
and a Hilbert curve (right)

Both the Morton curve, also known as z-curve, and the Hilbert curve are examples of space-filling
curves that preserve spatial locality. Both curves are good candidates to be used for IP addresses
since all addresses belonging to the same prefix, i.e., networks containing a power of two number of
addresses, are always confined to the same rectangle. Figure 5.1 illustrates an example of a Morton
curve and a Hilbert curve using 4-bit addresses. The in total 16 addresses are clearly grouped into
the four /2 prefixes (marked as four different colors), containing four entries each. This grouping
property also holds for longer addresses and other prefix lengths thanks to the recursive definition
of both the Morton curve and the Hilbert curve.

This thesis uses a Morton curve representation, which is mirrored along the x-axis. The Morton
curve was preferred over the Hilbert curve because of its always identical and therefore more
intuitive (z-)ordering of IP addresses within a given prefix.

5.1.2 Experimental Setup

The Fibulator requires a traffic trace and a FIB to perform a simulation. Apart from generating
FIBs and packet traces at random, the Fibulator project also contain utility scripts to generate
realistic traces and FIBs from real-world data.

To obtain realistic traffic traces, Packet Capture (PCAP) files from the MAWI archive [7] were used.
A Python script extracts the destination addresses and packet sizes to create a simplified packet
trace that can be used as an input for the Fibulator. For all subsequent experiments, the first one
million packets of a packet trace from samplepoint-F from February 1, 2025, were extracted.

To generate realistic FIBs, MRT files from the RouteViews project [5] were used. These MRT files
contain snapshots of RIB tables taken from different vantage points. A Python script processes the
TABLE DUMP V2 entries with subtype RIB IPV4 UNICAST to extract IPv4 prefixes and their associated
next hops. Finally, next hops are mapped to numeric port identifiers to simplify further processing.
In particular, for all evaluations, a RIB table from route-views2.oregon-ix.net was selected.
The snapshot is from February 1, 2025 and results in a FIB containing 1’030’747 entries. This FIB
will be further analyzed in the next section.

5.1. VARIABLE-STRIDE IMPLEMENTATION 21

5.1.3 Real-World FIB Distribution

This section addresses the first of the three research questions: how is a typical FIB structured
with respect to different prefix lengths and overall distribution? As described in the experimental
setup, the evaluated FIB was extracted from a real-world RIB dump that contains roughly one
million entries.

Prefix Length Distribution

Figure 5.2 provides two different perspectives of the prefix length distribution. The left plot shows
the absolute number of entries belonging to a certain prefix length in this FIB. The /0 entry
corresponds to the default route. The FIB does not contain any entries for prefix lengths smaller
than 8. The number of entries per prefix length grows with increasing prefix length from 8 to 24.
Two peaks can be observed at a prefix length of 16 and 24. The /24 FIB entries alone make up
61% of all entries. It is common for routers to not store entries with a prefix length longer than
24 to, for example, reduce the risk of BGP hijacking. However, this FIB contains entries for all
lengths ranging from 8 to 32.

Figure 5.2: Number of entries per prefix length (left) and coverage per prefix length (right).

The right plot depicts the coverage of all entries belonging to a given prefix length. The coverage
is calculated as the number of prefixes in the FIB belonging to the same prefix length, divided by
the total number of prefixes available at the respective prefix length. For example, there exist 256
/8 prefixes, which means that the 16 /8 entries result in a coverage of 16

256 = 6.25%. This can be
interpreted as the probability of a random packet being covered by one of the entries belonging to
a certain prefix length. This could potentially be a good indicator on how many packets will be
forwarded by certain prefix lengths. Interestingly, the entries with prefix length 16 have by far the
largest coverage of around 22% (apart from /0 which obviously has a 100% coverage). The /24
entries only have a coverage of around 3.7%. The number of possible prefixes per prefix length
grows faster than the number of entries per prefix length in this FIB.

Spatial Prefix Arrangement

However, Figure 5.2 offers no insights regarding the arrangement and possible overlaps of the differ-
ent entries belonging to certain prefix lengths. Figure 5.3 visualizes the spatial arrangement of the

5.1. VARIABLE-STRIDE IMPLEMENTATION 22

different prefix lengths using a Morton curve. To reduce the resolution of the graphics, only prefix
lengths up to /24 are depicted. Both plots have a resolution of 4096 x 4096 (= 212 ·212 = 224) pixels.
Each pixel corresponds to a single /24 prefix. The default route (/0 entry) is depicted as black pix-
els. To provide a better orientation, all /8 prefixes of the FIB are labeled accordingly from 0 to 255.

Figure 5.3: Morton curve visualization of a real-world FIB (left) and a randomly generated FIB
with the same prefix length distribution (right).

The left plot of Figure 5.3 depicts the real-world FIB. It can be seen that, for example, 10.0.0.0/8
(private address space) and 127.0.0.0/8 (loopback) are not represented in the FIB, which makes per-
fect sense. The /8 prefixes ranging from 224.0.0.0/8 to 255.0.0.0/8 which are reserved for MULTICAST
and FUTURE USE, are not mapped as well. It can be observed that the FIB looks generally quite
structured and there is little overlap of entries belonging to different prefix lengths. This becomes
especially clear, when comparing it to the randomly generated FIB on the right, which has the
same prefix length distribution.

In order to compare the overlap of the entries, belonging to different prefix lengths, between a
random and a real-world FIB, the coverage of all the entries with a prefix length between 8 and
24 was calculated. All black pixels, which correspond to the default route, count as not covered,
whereas the rest counts as covered. The two FIBs can be compared regarding their coverage since
they both contain an equal number of prefixes, following the same prefix length distribution. A
smaller coverage implies more overlapping prefixes. The real-world FIB achieves a coverage of
72.6%, while the prefixes of the randomly generated FIB only cover 63.3% of all addresses. This
confirms the less overlapping visual impression of the real-world FIB Morton plot.

Conclusion

When storing a FIB in a trie structure it is important to understand its prefix length distribution.
The /24 entries alone make up 61% of all FIB entries. However, they only achieve a coverage of
3.7%. At 22%, the /16 prefix entries have the greatest coverage. Another interesting feature of
real-world FIBs is their distinct spatial arrangement. They have significantly less overlaps than a
randomly generated FIB with the same prefix length distribution. This illustrates that randomly

5.1. VARIABLE-STRIDE IMPLEMENTATION 23

generating a FIB according to a realistic prefix length distribution might not always lead to realistic
results.

5.1.4 Impact of Stride Configuration on Memory Usage

This section discusses the second of the previously presented research questions: how do the num-
ber of stages in a pipeline and the stride configuration impact the memory required to store a FIB
in a variable-stride trie hardware implementation? One of the main challenges encountered is the
large number of possible stride configurations. Since the Fibulator requires some time to finish its
simulation, it is difficult to find an optimal stride configuration for a given number of stages.

Selecting a stride configuration is equivalent to the problem of distributing n balls (the number of
bits of an IP address) among k bins (the different stages). This is a typical combinatorics problem
and the number of possibilities is equal to

(
n+k−1
k−1

)
. When we add the additional constraint that

each stage needs to handle at least one bit of a destination address, which translates to each bin
being required to contain at least one ball, we obtain

(
n−1
k−1

)
possible stride configurations. For an

IPv4 implementation (n = 32) with, for example, k = 8 stages, this leads to more than 2.6 million
possible configurations.

Constant-Stride Comparison

A good starting point to analyze how the number of stages relates to the required memory is by first
looking at equally sized (constant) strides only. Figure 5.4 presents the different memory usages
for storing the FIB in a given constant-stride configuration. Four different constant stride lengths
were tested: 8, 4, 2 and 1, leading to 4, 8, 16 and 32 stages respectively.

Figure 5.4: Memory usage of FIB for different constant strides.

It can be observed that increasing the number of stages can generally help to decrease the memory
footprint of a FIB. This can be mainly explained by the fact that fewer prefixes need to be extended
(see Section 2.2.1 for more details). However, reducing the constant stride from 2 to 1 (going from
16 to 32 stages) leads to an increase in memory usage. This behavior is due to many stages
functioning primarily as ”pointer stages”, with the majority of their entries serving as pointers
to the next stage rather than storing egress information. Hence, there is a trade-off between not
introducing too many pointers in a stage and the number of prefixes that need to be extended.
It was generally observed throughout all simulations that a stride of 2 is the smallest stride, not
leading to an increase in memory usage.

5.1. VARIABLE-STRIDE IMPLEMENTATION 24

Split-Value of Stages

We have seen that additional stages can reduce the memory needed to store a FIB. However, it
is still unclear, where exactly those additional stages should be added. The question could be
formulated as follows: are there positions in the pipeline, where inserting additional stages is more
beneficial than in others?

In order to answer this question, the notion of a split-value of a stride or stage is introduced. This
split-value is defined as the factor by which the total memory, needed to store a FIB, gets reduced,
when a stage with a certain stride is split into two stages, each having only half the original stride.
Therefore, a split-value of 1 corresponds to no effect on the memory usage, while bigger split-values
correspond to more memory being saved. To obtain split-values, a constant stride of 8 (resulting
in 4 stages) and a constant stride of 4 (resulting in 8 stages) were used as a base case.

Figure 5.5 shows the split-values of the different stages, displaying the base case of a constant stride
of 8 on the left and the base case of a constant stride of 4 on the right. For example, in the left
plot, the split-value of stage [1, 8] is equivalent to the factor, the memory usage is reduced by using
a stride configuration of [4, 4, 8, 8, 8] instead of the [8, 8, 8, 8] base case, i.e., splitting stage [1, 8] into
two stages [1, 4] and [5, 8].

Figure 5.5: Split-values for configurations with a constant stride of 8 (left) and 4 (right)

From Figure 5.5 it becomes clear that choosing smaller strides at the right positions is crucial. In
particular, in the left plot, splitting the stage corresponding to the stride [17, 24], containing the
egresses of the FIB entries with prefix lengths from 17 to 24, results in a reduction of the memory
usage by a factor of 2.3. This can be explained by the fact that most of the FIB entries are located
in this range. The memory reduction is due to fewer prefixes having to be extended. Splitting the
other strides has a negligible effect on the memory usage and would only introduce unnecessary
stages and latency. The right plot with the base case of a constant stride of 4 displays similar
insights. Only splitting the stage responsible for prefix length from 21 to 24 results in a significant
memory usage reduction by a factor of 1.35. In general, the splitting value decreases as the stride
length of a stage becomes shorter.

It was observed that the splitting values of a constant-stride 2 base case tend to be even below 1,
meaning further splitting the strides results in an increase in memory. Additionally, it became clear
that even merging the first two strides in the [8, 8, 8, 8] configuration, leading to a [16, 8, 8] stride

5.1. VARIABLE-STRIDE IMPLEMENTATION 25

configuration does not result in a significant increase in memory usage. This can be explained by
the fact that the first 16 bits can only result in a worst-case of 216 = 65′536 entries, which is only
a small fraction of the total number of entries a FIB typically stores.

This leads to the next experiment with the assumptions that 1) the first 16 bits can be combined
into one stage and 2) Adding extra stages is only interesting in the range of prefix lengths from 17
to 24. When only looking at this small range, simulating all possible stride configuration becomes
feasible. The following experiment assumes a fixed number of 5 stages, leaving 3 variable stages
to handle the relevant middle part, containing the /17 to /24 prefixes. Figure 5.6 shows all the
different configurations for the range [17, 24], sorted by their corresponding memory usage. This
again demonstrates the importance of choosing the correct stride configuration. Even only varying
the stride configuration of 8 bits, while keeping the total number of stages constant, can lead to
memory footprints that vary by a factor of 2.1, when comparing the best and the worst configura-
tion.

Figure 5.6: Memory usage of different stride configurations with varying middle parts.

The stride configuration [16, 4, 2, 2, 8] is the best configuration found for a total of 5 stages, assum-
ing all strides are a power of 2. There might exist even better configurations for 5 stages, but the
potential memory savings are expected to be negligible. Figure 5.7 shows a more detailed plot of
the [16, 4, 2, 2, 8] configuration. It displays the number of entries used and the pointer-to-egress-
entries ratio of each stage. The width of the bars are proportional to the stride a stage covers. For
comparison, Figure 5.8 displays the same plot for a constant-stride 4 configuration.

The constant-stride 4 configuration results in a total memory consumption of 8.96 MB, whereas
the [16, 4, 2, 2, 8] configuration only requires 6.94 MB. This exemplifies that more stages do not
automatically lead to a smaller amount of memory needed to store a FIB. Instead, the positions
at which the additional stages are inserted is much more relevant. By comparing Figures 5.7 and
5.8 it can be observed that the constant-stride 4 configuration wastes stages, by maintaining four
individual stages which are mostly made of pointer entries, covering the [1, 16] stride. The larger
memory footprint is mostly due to stage [21, 24], containing many egress entries, which could be
split into two to reduce the number prefixes that need to be extended.

An important aspect that is not considered in the above analysis is the sizes of the RAM modules

5.1. VARIABLE-STRIDE IMPLEMENTATION 26

in each stage, which impacts the pointer sizes that need to be stored in the preceding stage. A
bigger module leads to longer addresses and, therefore, longer pointers. For simplicity, the sizes of
the different memory modules were chosen such that in theory all possible entries belonging to the
respective prefix length ranges could fit into it. For example, a stage handling /16 prefixes would
get enough capacity to store 216 memory blocks, leading to the previous stage having to store
16-bit pointers. This is generally much more than actually needed, and reducing the module sizes
to what is realistically necessary can reduce the pointer sizes and hence the overall memory usage.
Using this optimization, the overall memory footprint of the [16, 4, 2, 2, 8] stride configuration was
reduced by an additional 29% from 6.94 MB to 4.91 MB.

Figure 5.7: Number of entries and egress-to-pointer ratio of each stage using a [16,4,2,2,8] stride
configuration. Total memory usage: 6.94 MB

Figure 5.8: Number of entries and egress-to-pointer ratio of each stage using a constant-stride 4
configuration. Total memory usage: 8.96 MB

Conclusion

Using more stages and hence smaller strides can lead to a reduced memory footprint. However,
it turns out that selecting the right places to introduce additional stages is much more important

5.1. VARIABLE-STRIDE IMPLEMENTATION 27

than the mere number of stages.
To find a good stride configuration, two rules of thumb can be applied:

1. Stages that contain many entries, with most of them being egress entries, are generally worth
splitting. This aims to reduce the cost of extending many prefixes.

2. Stages that contain few entries, which are mostly pointers to the next stage, can be considered
to be merged. This reduces the overall number of stages and potentially reduces memory usage
as well.

In addition, it is important to keep memory modules as small as possible. Bigger modules and
therefore longer addresses lead to longer next-stage pointers and increased memory usage.

5.1.5 Memory Access Patterns

This section examines the last of the three research questions: what access patterns occur in the
different memory components during the forwarding of a realistic traffic trace? As described in the
experimental setup, a real-world traffic trace containing one million packets was used to perform
the following experiments. It is important to note that the used traffic was captured on the same
day as the snapshot of the evaluated FIB, but does not originate from the same location.

An intuitive starting point is to have a look at how many reads, also referred to as accesses in this
section, a stage has served after the packet trace has completed. The plot on the left in Figure
5.9 shows the number of reads divided by the total number of packets forwarded in the simulation.
This leads to the average number of accesses a packet triggers in each stage. A constant-stride 4
configuration was used to provide an equal granularity across all stages. Unsurprisingly, the first
three stages are accessed by almost every packet. This is in line with Figure 5.8 which shows that
the first two stages almost exclusively contain pointers to the next stage, leading to no packets
having their egress set in these stages.

Figure 5.9: Number of both pointer and egress entry accesses per packet (left) and fraction of
packets having their egress set per stage (right).

The right plot of Figure 5.9 shows the same information as the left plot from a different perspective.
It shows the number of packets that have their egress set at a given stage. This is equivalent to
looking at the differences in the left plot. As expected, the distribution looks similar to the coverage

5.1. VARIABLE-STRIDE IMPLEMENTATION 28

plot in Figure 5.2. Almost no packets have their egress set in the first stage through the default
route. This makes sense since the default route practically only covers IP address that belong to
reserved ranges. Using randomly generated traffic instead of real-world traffic leads to an increased
usage of the default route, and hence the first stage, because many reserved addresses are forwarded
as well. This implies that using randomly generated traffic on real-world FIBs can lead to distorted
results.

However, these aggregated plots do not offer any insights on more granular information, such as,
for example, what exact memory entries are accessed by how many packets. In theory, all egresses
in a given stage could be set by a single memory entry. Again, a Morton plot can be useful to get
a sense of the spatial distribution of memory accesses in a respective stage.

Figure 5.10: Heatmap displaying the accessed egress entries across different stages using a Morton
curve.

5.1. VARIABLE-STRIDE IMPLEMENTATION 29

Figure 5.10 visualizes the spatial accesses of egress entries in the form of a heatmap representation
using a Morton curve. It is important to understand that each memory entry in a stage maps to
a prefix that has the same length as the longest prefix length contained in its stride. All shorter
prefixes need to be extended to multiple entries with this longest prefix length. This explains the
resolution of the four different stages. For example, in the plot of the stage covering the stride
[9, 12] on the top right, each pixel corresponds to an entry representing a /12 prefix. This leads to
a resolution of 64 x 64 (= 26 · 26 = 212) pixels.

It becomes clear that there exists a high variance in the number of accesses among different egress
entries, spanning 5 orders of magnitude. This poses the question: what fraction of egress entries is
responsible for resolving, e.g., 90% of all forwarded packets in the span of one million packets?

Figure 5.11 displays the fraction of packets that have their egress set by the fraction of what x%
of the most frequently accessed egress entries. This plot clearly shows the unequal distribution of
the number of times different egress entries are accessed. 90% of all packets have their egress set
by only 0.18% of all egress entries, which corresponds to 4855 of the roughly 2.7 million entries.
99% of all packets are forwarded by 1.65% of all egress entries. Only the small fraction of 2.1%
is responsible for setting the egresses of the entire packet trace. Even among all the entries that
were accessed at least once during the simulation, there are big differences in how frequently they
were accessed. 90% of all packets have their egress set by roughly 10% of the accessed entries.
The orange curve in Figure 5.11 can also be interpreted as a zoomed-in version of the blue curve,
stretching out the part containing all the accessed entries.

Figure 5.11: What fraction of egress entries is responsible for setting the egress of how many
packets.

Of course, it needs to be considered that a packet trace consisting of only one million packets
is not even able to access all of the roughly 2.7 million egress entries. Nevertheless, there exists
a big imbalance in the number of accesses per egress entry. This demonstrates how effective a
caching solution can be in hardware forwarding. We believe that clever caching mechanisms play
an important role in achieving high throughput in modern forwarding hardware.

5.2. FIBULATOR PERFORMANCE 30

Conclusion

Most of the packets have their egress set through a /16 prefix entry. This aligns with the fact that
the /16 prefixes achieve the highest coverage in the evaluated FIB. The number of accesses per
egress entry are highly uneven. Only 1.65% of all egress entries are responsible for the forwarding
of 99% of the one million packets in the evaluated trace. Therefore, caching of recently used FIB
entries is considered to be an important aspect of achieving high throughput.

An interesting side-note is that the implemented trie structure would support caching almost out-
of-the-box. A challenge in caching FIB entries is the cache-hiding problem, meaning cached shorter
prefixes might hide longer, more specific prefixes. However, the normalized trie structure allows for
a save cache insertion of each egress node since all egress nodes are leaf nodes with zero children,
meaning there exist no longer prefixes. The cache would only need to be cleared (or other measures
to prevent cache-hiding would need to be put in place) as soon as the FIB structure is updated.

5.2 Fibulator Performance

This thesis does not include a detailed performance benchmark of the Fibulator. Instead, it presents
some approximate measurements to provide a general sense of execution time and memory usage.
Both memory usage and execution time mostly depend on the size of the FIB and the length of
the packet trace. Potential bottlenecks introduced in the algorithm implementation can slow down
the Fibulator as well. The main bottleneck of the current variable-stride trie implementation is the
creation of a FIB that is set up according to a strides configurations. Especially configurations with
longer strides, where many prefixes need to be recursively extended, lead to a significant increase
in execution time.

The benchmark is executed on a MacBook with an M2 chip on a single core. The Fibulator binary
is compiled with the build type set to Release. The benchmarks are based on the variable-stride
trie implementation and use the same setup as described in Section 5.1.2, with a FIB containing
roughly one million entries and a packet trace of one million packets. Both a constant-stride 8
and a constant-stride 4 configuration were tested to demonstrate the increased memory usage and
execution time for longer strides. The results are shown in Table 5.1.

Execution Time Memory Usage (RAM)

constant-stride 8 52 s 3.9 GB

constant-stride 4 25 s 1.7 GB

Table 5.1: Execution time and memory usage comparison of the Fibulator using two different
stride configurations

Chapter 6

Summary and Outlook

The Fibulator is a modular simulation environment that aims to simplify the prototyping process of
new algorithmic ideas for in-hardware forwarding. It can also be used to gain a better understanding
of already existing solutions. The following summarizes four important lessons learned during the
evaluation of the variable-stride trie implementation:

• Lesson 1: Morton curves are a useful tool for visualizing large IP address ranges. This makes
them a good fit to be used as a locality-preserving FIB representation that maintains high
granularity and preserves spatial information.

• Lesson 2: Using randomly generated FIBs or traffic traces can lead to distorted results when
evaluating LPM algorithms because they might not contain key characteristics of real world
FIBs and packet traces.

• Lesson 3: The chosen stride configuration can have a big impact on the memory required
to store a FIB. Not necessarily the number of stages, but rather where the additional stages
are inserted plays a crucial role.

• Lesson 4: Some egress entries are significantly more accessed than others. A small fraction
of entries is responsible for most forwarded packets. This is why caching can be very effective
in forwarding.

To further improve the simulation capabilities of the Fibulator, future work could focus on im-
plementing additional components and more sophisticated algorithms. In particular, the effects of
caching and adding TCAM modules to the pipeline seem to be interesting avenues to be further
explored. Another aspect that could be pursued is to improve the performance of the Fibulator.
Introducing parallelization and other optimizations may lead to shorter execution times and less
memory usage.

The current implementation of the variable-stride trie algorithm only evaluates constant FIBs,
meaning the FIB does not change over time. Future work could also focus on evaluating imple-
mentations with dynamically changing FIBs to better reflect real-world conditions.

31

Bibliography

[1] Asai, H., and Ohara, Y. Poptrie: A Compressed Trie with Population Count for Fast and
Scalable Software IP Routing Table Lookup. SIGCOMM Comput. Commun. Rev. 45, 4 (Aug.
2015), 57–70.

[2] Draves, R., King, C., Venkatachary, S., and Zill, B. Constructing optimal ip routing
tables. In IEEE INFOCOM ’99. Conference on Computer Communications. Proceedings. Eigh-
teenth Annual Joint Conference of the IEEE Computer and Communications Societies. The
Future is Now (Cat. No.99CH36320) (1999), vol. 1, pp. 88–97 vol.1.

[3] FS.com. N9600-64OD, 64-Port Ethernet HPC/AI Data Center Switch. https://www.fs.com/
de/products/250955.html, June 2025.

[4] Sobrinho, J. a. L., Vanbever, L., Le, F., and Rexford, J. Distributed route aggrega-
tion on the global network. In Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies (New York, NY, USA, 2014), CoNEXT
’14, Association for Computing Machinery, p. 161–172.

[5] University of Oregon Route Views Project. RouteViews: BGP Data Collection
Project. https://routeviews.org/, June 2025.

[6] Varghese, G., and Xu, J. Network Algorithmics, 2 ed. Morgan Kaufmann, 2022.

[7] WIDE Project. MAWI Working Group Traffic Archive. https://mawi.wide.ad.jp/mawi/,
June 2025.

[8] Wikipedia. Space-filling curve. https://en.wikipedia.org/wiki/Space-filling_curve,
June 2025.

[9] Yeluri, S. Longest Prefix Matching in Networking Chips. https://www.linkedin.

com/pulse/longest-prefix-matching-networking-chips-sharada-yeluri/, June 2025.
LinkedIn article.

32

https://www.fs.com/de/products/250955.html
https://www.fs.com/de/products/250955.html
https://routeviews.org/
https://mawi.wide.ad.jp/mawi/
https://en.wikipedia.org/wiki/Space-filling_curve
https://www.linkedin.com/pulse/longest-prefix-matching-networking-chips-sharada-yeluri/
https://www.linkedin.com/pulse/longest-prefix-matching-networking-chips-sharada-yeluri/

Appendix A

Build and Execution Workflow

The Fibulator project uses CMake as a cross-platform build generator. In order to set up and build
the project, follow the instructions in the README file in the root directory of the Fibulator project.

In order to run a simulation, it is recommended to use the Python wrapper located in the python
directory. The run.py script demonstrates a possible implementation of such a wrapper. This
wrapper is tailored for the variable-stride trie implementation. It might need to be adapted when
an other algorithm is implemented. The wrapper covers the following steps:

1. Provide a pipeline configuration for which a simulation should be performed. This includes,
for example, the number of stages and their corresponding strides, the number of egress ports
and the capacities of the different memory modules.

2. Provide the path to the FIB and the packet trace that should be used for the simulation.

3. The Python wrapper automatically generates an algo config.cpp file from the provided
configuration.

4. The wrapper builds the project by executing the make command and runs the resulting
fibulator binary.

5. As soon as the Fibulator has finished, run.py checks whether all packets were forwarded
correctly according to the provided FIB. This is done with the help of a Patricia trie imple-
mentation in Python using the pytricia module. This only serves as a sanity check and has
to be adapted if the simulation involves a changing FIB over time.

Once the run.py wrapper finished, the Fibulator should have generated multiple CSV files contain-
ing the forwarded packets and the requested memory logs in the output directory. The notebook

subdirectory in the python directory provides many different plotting capabilities in the form of
Jupyter notebooks that were used for the evaluation in this thesis. The fibulator py tools direc-
tory contains other useful helper functionalities that can be used and adapted for future applications
involving the Fibulator.

I

	Introduction
	Motivation
	Task and Goals
	Overview

	Background
	Internet Routing
	LPM Implementations
	Tries
	Hardware Implementation

	Design
	Overview
	Architecture
	Data Plane
	Control Plane

	Data Collection

	Implementation
	Code Organization
	Fibulator

	Event Data Structure
	Ownership Model
	Key Components
	Simulation
	Planes
	Memory Components

	Variable-Stride Implementation
	Configuration
	Control Plane
	Data Plane

	Utilities
	Bits Representation
	IP Addresses and Prefixes
	Memory Logging
	CSV Input and Output
	Debug Printing

	Evaluation
	Variable-Stride Implementation
	Space-Filling Curves
	Experimental Setup
	Real-World FIB Distribution
	Impact of Stride Configuration on Memory Usage
	Memory Access Patterns

	Fibulator Performance

	Summary and Outlook
	References
	Build and Execution Workflow

