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Abstract

QUIC is a next-generation transport protocol designed to address the limitations of traditional
transport protocols. However, its processing overhead becomes its main performance bottleneck.
In this work, we leverage io uring, an asynchronous interface to the Linux kernel, to batch system
calls and reduce context switches made by the QUIC server. This approach reduces processing
overhead and enhances server performance. Experimental results demonstrate that, under an ideal
high-bandwidth and lossless network, the QUIC server with the io uring network stack achieves
a 24.4% reduction in download time for an 80 MB object, maintains 27.8% higher bandwidth, and
invokes significantly fewer system calls. Moreover, the number of system calls grows at a much
slower rate as the number of connections increases, indicating improved scalability.
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Chapter 1

Introduction

1.1 Motivation

QUIC is a next-generation transport protocol designed to address the limitations of traditional
transport protocols, aiming to reduce latency and enhance efficiency. Currently, over 8% of global
websites utilize QUIC [14]. To circumvent middlebox interference and enable rapid deployment of
updates without OS modifications, QUIC is implemented in user-space and operates atop UDP
[9]. The user-space design offers flexibility but also presents certain challenges. QUIC servers
experience approximately 3.5 times higher utilization than TLS/TCP servers, driven by factors
such as cryptographic operations, UDP packet handling, and the management of internal QUIC
states [9]. Under high-bandwidth conditions, QUIC’s performance can lag behind TCP due to its
processing overhead [17]. Various techniques have been proposed to mitigate these inefficiencies,
such as NIC offload [15], Client side’s UDP GRO [17] and delayed ACK [6].

Despite these efforts, insufficient attention has been devoted to reducing server-side processing
overhead through system call batching. While the cost of individual system calls might appear
negligible, the cumulative impact becomes significant on high-performance servers that execute
numerous calls [8]. io uring, an asynchronous interface to the Linux kernel, enables the submission
of multiple I/O requests with a single system call, thereby reducing context switches [5]. This
makes io uring a promising approach for reducing the syscall overhead in QUIC servers, potentially
enhancing its performance.

1.2 Task and Goals

This project aims to integrate io uring into the QUIC network stack to minimize the number of
syscalls and context switches performed by the server, thereby enhancing its performance. Experi-
ments are conducted, and various metrics are measured to analyze the impact of io uring on server
efficiency.

1.3 Overview

This following chapters are organized as follows: Chapter 2 provides an introduction to QUIC,
io uring, and related works. Chapter 3 details the design of the QUIC io uring server, the baseline
server, and the client-side implementation. Chapter 4 presents and analyzes the experimental
results. Finally, Chapter 5 discusses the project’s limitations and outlines potential directions for
future work.
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Chapter 2

Background and Related Work

2.1 Background

2.1.1 QUIC

Initially proposed and developed by Google [9], QUIC was later standardized by the IETF [7]. It
operates in user space with enforced encryption, featuring a combined cryptographic and trans-
port handshake that enables 0-RTT or 1-RTT connection setup [9]. Its stream-multiplexing design
prevents one stream’s blocking from affecting others, thereby addressing the Head-of-Line (HOL)
blocking problem. It also owns an enhanced loss recovery mechanisms [9]. The user-space im-
plementation helps QUIC overcome protocol ossification and allows for easier deployment without
operating system updates. For short flow, QUIC demonstrates significant latency reduction [16]. To
summarize, QUIC meets critical goals such as enhanced security, faster connection setup, reduced
HOL blocking delays, and simplified deployment [11].

However, these advantages come at the cost of higher processing overhead compared to TCP.
For instance, in some QUIC implementations, cryptographic operations can consume more than
40% of the total CPU time [15]. In addition, QUIC’s user-space state management, including
payload processing, timeout detection, and ACK generation, leads to increased system calls, context
switches, and data copying between user and kernel space. Packet I/O operations alone can account
for up to 50% of CPU usage [15]. This high CPU usage limits QUIC’s performance under high-
speed network conditions, where its data rate can be reduced by as much as 45.2% compared to
TCP [17]. Some methods have been proposed to address these performance issues, some of which
will be discussed in Section 2.2.

2.1.2 io uring

Introduced in 2019 and available from Linux kernel version 5.1 [3], io uring revolutionizes Linux I/O
by enabling efficient, low-overhead communication between user and kernel space. Its key feature
is the ability to batch multiple I/O requests using shared buffers—the submission queue (SQ) and
completion queue (CQ)—which significantly reduces the number of system calls required for I/O
operations.

Unlike traditional synchronous and asynchronous programming interfaces that rely on at least
one system call per request [8], io uring allows applications to queue multiple requests in the SQ
and submit them all at once with a single system call (io uring enter(2)). This design reduces
syscall overhead, minimizes context switches, and enhances server performance, particularly for
workloads with high I/O intensity.
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2.2. RELATED WORK 3

2.2 Related Work

Previous works have proposed several methods to mitigate QUIC’s high processing overhead. These
methods can be categorized based on the three major sources of QUIC’s CPU cost, as identified in
[9].

Source #1: Cryptography: Langley et al. [9] employ a hand-optimized version of the
ChaCha20 cipher for mobile clients, aiming to reduce cryptographic overhead. Yang et al. [15]
explore offloading the cryptographic module to the NIC, thereby reducing cryptographic processing
in user space.

Source #2: Sending and Receiving UDP Packets: Zhang et al. [17] propose the use of
UDP Generic Segmentation Offload (GSO) and Generic Receive Offload (GRO) to reduce the num-
ber of packets processed by the network stack. Kernel-bypass techniques, such as those described
by Rizzo [10], help avoid costly data copies between user and kernel space.

Source #3: Internal QUIC State Management: Langley et al. [9] optimize critical
paths and data structures for better cache efficiency. Iyengar et al. [6] suggest the use of delayed
acknowledgments to reduce the overhead associated with frequent ACK generation.

Several proposed methods aim to reduce QUIC’s CPU cost by minimizing the number of opera-
tions. For example, UDP GSO/GRO [17] and delayed ACKs [6] focus on decreasing the frequency
of certain operations. Similarly, io uring, by batching system calls, reduces the number of context
switches and improves efficiencies. Based on its operational focus, io uring should be categorized
under the second source of QUIC’s CPU cost: Sending and Receiving UDP Packets.



Chapter 3

Design

This chapter outlines the design of the QUIC io uring server and the baseline server. Additionally, it
introduces the client-side implementation, which simulates multiple simultaneous client connections.

Rust was chosen as the programming language, with Quiche [2] serving as the QUIC library
and io uring [12] as the low-level Linux kernel interface. ByteDance has developed monoio [1], a
Rust runtime that leverages io uring, epoll, and kqueue. However, it does not offer the low-level
APIs required to implement the logic for batching syscalls. Thus, we do not use it in this project.

3.1 QUIC io uring Server Design

3.1.1 Server Architecture

The server is designed to handle multiple client connections simultaneously. The server architecture
is illustrated in Figure 3.112, which consists of a single receiver thread and eight worker threads. The
receiver thread is responsible for receiving packets and delivering them to the appropriate worker
threads. Each worker thread handles multiple client connections, performing tasks including packet
processing, maintaining QUIC connection states, generating responses, and sending packets. Each
receiver/worker thread has one dedicated ring for receiving/sending.

The data flow for a client to request data from the server are illustrated in Figure 3.1. The
client begins by sending a request to the server. A receiver thread retrieves the packet from the
socket and forwards it to a worker thread. The worker thread processes the request and sends a
response back to the client through the same socket used for receiving packets.

Unlike TCP connections, the QUIC server does not allocate a new port for each incoming
connection; instead, a single port is used for all the connections. For this reason, we do not allocate
a new thread for each connection to handle both receiving and sending operations. Doing so could
result in a thread inadvertently receiving data from a connection managed by another thread, which
would significantly increase system complexity. This project primarily focuses on scenarios where
the clients request data from the server. In this case, receiving is not a bottleneck, and a single
receiver thread is sufficient to handle the workload. However, this setting may present challenges
in other scenarios, such as when clients upload large amount of data to the server. This limitation
will be discussed in Chapter 5.

1The io uring symbol is sourced from https://www.reddit.com/r/linux/comments/1cv9hg1/whats_new_with_

io_uring_in_610/
2Icons are sourced from https://www.flaticon.com
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Figure 3.1: Server Architecture Design (one receiver thread and eight worker threads)

3.1.2 Receiver thread

The receiver thread is responsible for receiving data from the socket and forwarding it to the appro-
priate worker thread. To simplify the implementation, client IP addresses are used to differentiate
between connections instead of relying on connection IDs. As a result, the receiver thread does not
parse the packets but focuses solely on forwarding them.

For the packets reception, we enable the multi-shot feature. In the standard single-shot
mode, a separate submission queue entry (SQE) must be submitted for each packet to receive,
which corresponds to one completion queue entry (CQE). However, with multi-shot receive enabled,
only a single SQE with the RecvMsgMulti operation needs to be submitted initially. The kernel
will then fill CQEs as packets arrive. For this operation, a buffer pool must be registered, from
which the kernel can get buffers for receiving packets. To achieve this, we use the Rust-based
io uring buf ring [4], with modifications to enable buffer delivery to the worker threads via a
channel.

The workflow of the receiver thread is shown in figure 3.2. The receiver thread first retrieves all
incoming packets from the socket by iterating through the completion queue (CQ). The received
buffer is then forwarded to the corresponding worker thread via a Rust channel. Before returning
to step 1 and starting the next iteration, the receiver thread attempts to recollect buffers that have
been delivered back from the worker threads.

3.1.3 Worker thread

The worker thread is responsible for parsing packets, maintaining QUIC states, and generat-
ing/sending responses. For sending packets, io uring is employed to batch system calls, reducing
overhead and improving efficiency. The workflow of the worker thread is illustrated in figure 3.3,
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which modifies the original server logic in Quiche [2] to integrate io uring.
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Figure 3.3: Server worker thread workflow

The key steps where io uring is working are steps 5 and 6. In step 5, instead of invoking a
system call for each packet to send, batching is performed by submitting multiple SQEs in a single
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io uring enter(2) system call. In step 6, the server recollects the send buffers. However, since
io uring is an asynchronous interface, the send buffer can not be reused immediately after the
system call is invoked. Instead, the server must iterate through the completion queue (CQ) to
identify which send operations have completed and then safely recollect the corresponding send
buffers.

3.2 Baseline Server Design

The only difference between the QUIC io uring server and the baseline server is the interface used to
send and receive packets. The baseline server relies on the send to and recv from APIs provided
by the standard library. Unlike the io uring server, which batches packet sends into a single system
call, the baseline server requires one send to/recv from for each packet sent/received.

3.3 Client Design

We primarily follow the client logic in the Quiche library, but here we aim to handle multiple
connections simultaneously. While using one thread per client might seem reasonable, system
resources are limited. For I/O-intensive tasks like this, the tokio [13] asynchronous runtime offers
a more suitable solution. A fixed number of kernel threads are launched, with each client being
assigned a tokio task. The tokio task running on a thread yields control to other tasks whenever
a blocking operation is executed. Once the blocking operation is completed, the task is pushed to
a queue, awaiting reassignment to a thread. This design prevents the blocking of an entire thread,
allowing for high concurrency and simulating multiple simultaneous client connections.



Chapter 4

Evaluation

This chapter begins by introducing the experimental setup and the measurements conducted. Fol-
lowing that, the results are presented, compared, and analyzed.

4.1 Experiment setup

The experiment is conducted on a single virtual machine (VM). The VM runs Ubuntu 22.04.5 LTS
with kernel version 6.8.0, which supports io uring. Additional details about the VM are provided
in Table 4.1.

Ubuntu Version 22.04.5 LTS

Kernel Version 6.8.0-50-generic

CPU Model Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz

CPU Architecture x86 64

Num of CPU(s) 6

Num of socket(s) 6

Core(s) per socket 1

Main Memory 31 GiB

Table 4.1: VM information

To minimize interference between the server and client, the taskset command is used to pin
the server to cores 0 and 1, while the client is pinned to cores 2, 3, 4, and 5. The kernel socket
receive and send buffer sizes are set to 128 MB to prevent packet loss caused by excessive data
rates.

All QUIC configurations, shown in Table 4.2, are identical for both the QUIC io uring server
and the baseline server.

The experiment is designed to be simple and straightforward. The client sends a request for
an object to the server, and after the connection is established, the server responds by sending
the object to the client. The time-to-last-byte (TTLB) is measured, which represents the duration
between the client’s request and the reception of the last byte. The requested object size is fixed at
1, 10, 50 and 80 MB, and the number of clients varies from 1 to 51. Additionally, the bandwidth
on the client side is measured by maintaining a steady data stream over an extended period. To
analyze system behavior, strace is used to record the system calls made by the server.
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4.2. RESULT 9

Maximum send/recv UDP Payload size (bytes) 1350

Maximum Idle Timeout (s) 10

Initial Connection-level Flow Control Window Size (bytes) 10,000,000

Initial Stream-level Flow Control Window Size (bytes) 1,000,000

Maximum Connection-level Flow Control Window Size (MB) 24

Maximum Stream-level Flow Control Window Size (MB) 16

Maximum Acknowledgment Delay (ms) 25

Congestion Control Algorithm cubic

Initial Congestion Window Size (packets) 10

Table 4.2: QUIC configurations

4.2 Result

4.2.1 Time to Last Byte (TTLB)

The TTLB can also be interpreted as the time required to download the entire object. For the
experiments, the number of clients is set to 1, 11, 21, 31, ..., 51, and the requested object size is
configured to 1MB, 10MB, 50 MB and 80 MB. We repeat the test for 5 times. Results are shown
in Figure 4.1.
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For longer data flow, the QUIC server with the io uring network stack demonstrates a shorter
TTLB compared to the baseline. When the data flow size is 50 MB, the QUIC io uring server
reduces the TTLB by 16.7% with 11 clients and by 24.3% with 41 clients. On average, the io uring
network stack reduces the TTLB by 19.5% for a 50 MB data flow and by 24.4% for an 80 MB data
flow.

However, for short flow—such as 1 MB in this example—the QUIC io uring server exhibits a
significantly larger TTLB. We speculate that for a short flow, the TTLB is dominated by connection
setup time, during which few packets are exchanged, limiting the batching benefits of io uring.
Other inherent limitations of the server should also contribute to this issue. These drawbacks are
included as part of our work’s limitations in Chapter 5.

4.2.2 Bandwidth

To measure client-side bandwidth, the number of clients is set to 1, and the data stream is main-
tained steadily over an extended period. The test is repeated 10 times, and the results are presented
in Figure 4.2. The average bandwidth achieved by the baseline server is 36.3 MB/s, while the QUIC
io uring server maintains an average bandwidth of 46.4 MB/s. This represents a 27.8% increase in
bandwidth with the io uring network stack.
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4.2.3 System Calls

To analyze system call behavior, strace is used to record the system calls made by the server. Since
tracing multiple threads incurs a significant performance penalty, the server is restricted to a single
thread for this experiment. This thread handles receiving, processing, and sending operations.
Additionally, due to the processing overhead introduced by strace, the test is conducted with 1
to 8 clients. However, the results are sufficient to demonstrate the batching effect of io uring. The
test is repeated 5 times.

The case with 2 clients is used to highlight the system calls made by the baseline server (Ta-
ble 4.3) and the io uring server (Table 4.4).

Syscall Calls %

epoll wait 77.8 0.032

recvfrom 80190.6 33.27

sendto 80503.8 33.40

getsockname 80114.8 33.24

munmap 4.4 0.0018

write 2.0 0.00083

brk 144.2 0.060

mmap 3.0 0.0013

mremap 0.6 0.00025

Total 241041.2 100

Table 4.3: Syscalls made by the Quic baseline
server (2 clients, data flow size = 50MB)

Syscall Calls %

io uring enter 50.2 8.48

getsockname 353.2 59.67

munmap 5.4 0.91

write 1.4 0.24

brk 163.4 27.60

mmap 6.6 1.11

mremap 11.8 1.99

Total 592.0 100

Table 4.4: Syscalls made by the Quic io uring
server (2 clients, data flow size = 50MB)

Figure 4.3 illustrates the total number of system calls made by the server as the number of
connections increases. The results indicate that the QUIC io uring network stack significantly
reduces the number of system calls.
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To further investigate the relationship between the number of connections and the system calls,
we examine whether the increase in system calls is proportional (linear), less than proportional
(sub-linear), or more than proportional (super-linear). For this analysis, the number of system calls
is normalized with respect to the single-client case. Figure 4.4 reveals that the baseline server’s
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system calls increase nearly linearly with the number of connections, while the QUIC io uring server
exhibits a sub-linear increase, which is much slower.
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Chapter 5

Outlook

In the previous chapters, we have demonstrated the performance improvements enabled by io uring.
It reduces the number of system calls, decreases download time, and helps maintain higher band-
width. In this chapter, we discuss the limitations of our work and suggest directions for future
research.

Limitation #1: Slow Connection Establishment. As illustrated in Figure 4.1, for a
short flow, the TTLB is unusually high for the QUIC io uring server. In such cases, the TTLB
is predominantly determined by the connection setup time, during which only a limited number
of packets are exchanged. As a result, the batching benefits of io uring are not fully realized.
Additionally, other potential inefficiencies within the server may contribute to this unusually slow
connection establishment time. Future work should investigate this issue to identify the underlying
causes and propose effective solutions. Addressing this limitation would not only improve server’s
performance for short data flows but could also further enhance its efficiency for longer flows.

Limitation #2: Zero-Copy Feature. We did not enable the zero-copy feature in the QUIC
network stack. Data copying between user and kernel space introduces significant overhead, which
slows down the server. Future work could implement zero-copy functionality in the QUIC io uring
server to further improve performance, especially in high-bandwidth environments.

Limitation #3: Upload Scenarios. Our study primarily focuses on scenarios where clients
request data from the server, making sending the main bottleneck. We did not conduct tests where
clients upload data to the server, which would shift the bottleneck to receiving operations. In such
cases, modifications to the server design may be necessary, as a single receiver and ring might not
efficiently handle high-throughput data reception. Future work could investigate these scenarios
and propose optimized solutions.

Limitation #4: Network Environment Diversity. To show the optimization effects of
batching syscalls with io uring, we condcut the experiments under a high-bandwidth and lossless
network condition. We did not evaluate the QUIC io uring server’s performance in varied network
environments. Future work could explore these conditions and adapt the server implementation to
achieve robust performance across different network scenarios.
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