
BGP Security in the Age of Machine Learning:
Why Current Defenses Fall Short

Abstract—Border Gateway Protocol (BGP) remains a founda-
tional yet vulnerable component of internet routing, frequently
targeted by hijacks and other malicious activities. While the
Resource Public Key Infrastructure (RPKI) mitigates some
threats, it is incompletely deployed and vulnerable to attacks
like forged-origin hijacks. Consequently, ML-based monitoring
systems analyzing public BGP data have become crucial defenses.
However, these systems implicitly trust the integrity of the
monitored data. This paper demonstrates that this trust is
misplaced. We show that state-of-the-art ML-based BGP mon-
itoring systems, specifically DFOH and BEAM, are susceptible
to adversarial manipulation. Attackers can poison the historical
data used by these systems or pollute the statistical metrics
they rely on. Through analysis and simulation, we illustrate
how carefully crafted BGP announcements can allow malicious
hijacks, including RPKI-compliant forged-origin attacks, to evade
detection. Our findings expose the fundamental limitations of
relying solely on passively collected public BGP data for security
and highlight the urgent need for more robust, multi-faceted
strategies to protect the internet’s core routing infrastructure.

The Border Gateway Protocol (BGP) serves as the backbone
of the internet, directing traffic between the vast network of
Autonomous Systems (ASes) that comprise the global infras-
tructure. However, BGP was designed in an era prioritizing
connectivity over security, leaving it without inherent mecha-
nisms to verify the authenticity of routing information [1]. This
fundamental vulnerability makes it susceptible to malicious
manipulation, most notably BGP hijacking, where an attacker
illegitimately claims ownership of IP address blocks (prefixes),
and route leaks, where routing announcements are propagated
beyond their intended scope. These incidents can redirect
vast amounts of internet traffic, enabling espionage, causing
widespread service outages, and undermining the stability of
the internet [2]–[5]

To combat these threats, the Resource Public Key Infras-
tructure (RPKI) was developed [6]. RPKI provides a way to
cryptographically verify that an AS is authorized to origi-
nate routes for specific IP prefixes, significantly mitigating
traditional prefix hijacks. However, RPKI deployment is far
from universal [7], [8], leaving large parts of the internet
unprotected. Furthermore, even where RPKI is deployed, it
remains vulnerable to specific manipulations, such as forged-
origin attacks [9]. In these attacks, an adversary announces

a prefix belonging to a victim but prepends the victim’s
legitimate AS to the path. This makes the announcement
appear valid to RPKI checks while still allowing the attacker
to attract traffic, highlighting the need for security measures
beyond RPKI alone. Another cryptographic solution, BGPSec
[10], aims to secure the entire path of BGP announcements,
offering stronger protection against path manipulation attacks.
However, similar to RPKI, its deployment has been extremely
slow, limiting its practical effectiveness in the current internet
landscape.

Given the limitations of cryptographic solutions like RPKI
and the slow adoption of BGPSec, the BGP security commu-
nity has increasingly turned towards BGP monitoring. Systems
leverage data from public collectors like RouteViews [11] and
RIPE RIS [12], which aggregate BGP updates from hundreds
of vantage points worldwide. In recent years, Machine Learn-
ing (ML) and data-driven techniques have been integrated into
these monitoring systems. By analyzing historical and real-
time BGP data, these systems extract complex features (e.g.,
AS-path characteristics, topological changes) and train models
to distinguish legitimate routing behavior from anomalies in-
dicative of hijacks or leaks. Prominent examples of such data-
driven systems include academic proposals like ARTEMIS [9],
DFOH [13], and BEAM [14], as well as commercial offerings
like Cisco’s ThousandEyes [15].

However, like many ML applications, these systems face
challenges regarding the integrity of their input data. Their
effectiveness can be compromised if the observed BGP data
does not accurately reflect ground truth, particularly if it is
subject to deliberate manipulation by sophisticated adversaries.
Attackers, aware of these monitoring systems, can craft ma-
licious BGP announcements specifically designed to deceive
the ML models. This constitutes an adversarial attack, a well-
known vulnerability in the ML domain, where inputs are subtly
altered to cause misclassification [16], [17].

This paper demonstrates that current state-of-the-art ML-
based BGP monitoring systems are susceptible to such adver-
sarial manipulation. We show how attackers can poison the
knowledge bases used by these systems or pollute the metrics
they rely on, allowing malicious hijacks (including RPKI-
compliant forged-origin attacks) to evade detection. Through
analysis and simulation targeting systems like DFOH [13]
and BEAM [14], we expose the fundamental limitations of
relying solely on publicly visible BGP data for security. Our
findings underscore the urgent need for more robust, multi-
faceted security strategies to protect the internet’s core routing
infrastructure from sophisticated adversaries.

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.[23|24]xxxx
www.ndss-symposium.org

M

Q

HV

B N

P

BGP Monitor: logs
best routes at router Q

1.0.0.0/8

victim
hijacker

Hijack Type | AS Path

Type 0: H
Type 1: H — V

Announcement H → N

traffic flow
before hijack

Autonomous
System (AS)

traffic flow
after hijack

Fig. 1. Example of hijack for prefix 1.0.0.0/8 owned by AS V. Single-headed
solid arrows indicate the direction of the money in customer-provider links;
double-headed arrows represent charge-free links.

I. BACKGROUND

A. Prefix Hijacking

Prefix hijacking is a malicious activity where an attacker
illegitimately claims ownership of IP address blocks (prefixes)
they do not control. This is possible because the BGP pro-
tocol, which manages routing between ASes, was designed
with an inherent trust model, lacking built-in mechanisms
to verify the authenticity of route announcements. When an
attacker successfully hijacks a prefix, they can redirect internet
traffic intended for the legitimate owner, leading to severe
consequences such as service outages, espionage, and financial
losses, as seen in attacks targeting cryptocurrency platforms
like KlaySwap [4] and MyEtherWallet [5].

Hijacks can be categorized based on their complexity.
Following the taxonomy proposed in [9], a Type-0 hijack
involves an attacker announcing a prefix belonging to another
AS without altering the origin AS in the announcement. This is
the simplest form of hijack. A Type-1 hijack, or forged-origin
hijack, occurs when the attacker announces the victim’s prefix
but lists the victim’s AS as the origin. While the Resource
Public Key Infrastructure (RPKI) [6], which cryptographically
links prefixes to their legitimate origin ASes, can effectively
prevent Type-0 hijacks when deployed, it is less effective
against Type-1 hijacks if the attacker manipulates the AS
path in specific ways (e.g., prepending the legitimate origin).
Figure 1 illustrates both Type-0 and Type-1 hijack scenarios.

B. BGP monitors

BGP monitors are crucial infrastructure components for
observing the global state of internet routing. Prominent
examples include the RouteViews project [11] and the RIPE
Routing Information Service (RIS) [12]. These projects oper-
ate globally distributed collectors that establish BGP peering
sessions with numerous ASes worldwide, acting as vantage
points. By passively listening to the BGP updates (including

announcements and withdrawals) exchanged in these sessions,
monitors collect vast amounts of routing data. This data
typically includes periodic snapshots of the Routing Informa-
tion Base (RIB) from their peers and continuous streams of
UPDATE messages reflecting real-time changes. The data is
typically stored and distributed in the Multi-threaded Routing
Toolkit (MRT) format [18] and access is provided through near
real-time streams, often using the BGP Monitoring Protocol
(BMP) [19], and periodic archival dumps (e.g., RIB snapshots
every few hours and update logs every few minutes). While
invaluable, this data provides an incomplete view of the
internet’s routing dynamics, as monitors only capture routes
propagated towards their specific vantage points. Despite this
limitation, in the current data-driven era, BGP monitors are
indispensable for security analysis, performance monitoring,
and research, offering the most comprehensive publicly avail-
able source of information for understanding BGP behavior
and detecting anomalies like hijacks.

C. Data-driven Hijack Detection

Given the limitations of inherent BGP security and the
incomplete deployment of RPKI, data-driven hijack detection
systems have emerged as a critical layer of defense. These
systems analyze BGP data, primarily sourced from public
monitors, to identify suspicious routing events.

More sophisticated systems employ machine learning (ML)
and anomaly detection techniques to uncover complex at-
tacks, including forged-origin hijacks (Type-1) and route leaks,
which might evade simpler checks. These systems analyze
features extracted from BGP updates, such as AS-path char-
acteristics, prefix propagation patterns, and consistency with
historical data, to build models of normal routing behavior and
flag significant deviations [9], [13], [14], [20], [21]. A general
overview of such a system is depicted in Figure 2. Typically,
these systems operate in three phases: first, they are triggered
by new BGP updates observed by monitors; second, they
check the legitimacy of the update against a knowledge base
of historical data or learned models; finally, if the calculated
metrics exceed certain thresholds, they raise an alert. For
instance, DFOH is triggered by new AS links, checks them
by computing features (e.g., topological, PeeringDB-based)
against its historical graph, and alerts based on a Random
Forest classifier’s output. While their specific architectures
and algorithms vary, a common characteristic is their reliance
on historical BGP announcements collected by monitors to
establish a baseline or knowledge base against which new
routes are evaluated. This reliance on potentially manipulable
public data is a key focus of this paper.

II. OVERVIEW

A. Threat Model

We consider an adversary who operates their own AS and
is capable of injecting malicious BGP announcements into the
global routing system with the intent of disrupting internet
traffic, specifically through prefix hijacking. The attacker’s
primary objective is to execute a Type-1 hijack. This type of

Q N H VAS path:

prefix: 1.0.0.0/8 BGP
routes

BGP monitors

Phase 1:
trigger

Phase 2:
check

Phase 3:
alert

data to
check

H V

hijack
metrics

Monitor-based defense system

[7,0.6,0.4]

knowledge base

Q N H VAS path:

prefix: 1.0.0.0/8 suspected
hijacks

Fig. 2. General architecture of a monitor-based hijack detection system.

attack is particularly relevant in the context of our study, as it
targets scenarios where the RPKI is widely deployed. While
RPKI provides cryptographic validation of route origins, it
remains vulnerable to forged-origin attacks, which are the
focus of the defenses analyzed in this paper.

We assume that the attacker operates in an environment
where their upstream providers do not enforce strict IP prefix
filtering or AS path filtering. This assumption is grounded
in real-world observations of past hijacks, where such filter-
ing mechanisms were absent, allowing malicious announce-
ments to propagate [2]–[5]. The lack of filtering by upstream
providers is a critical enabler for the adversary, as it permits
the injection of illegitimate routes into the global BGP routing
system.

Furthermore, the adversary may leverage readily available
commercial transit services, often offered by hosting providers,
which allow users to acquire BGP sessions relatively eas-
ily and cheaply, frequently through Virtual Machines (VMs)
[22], [23]. We assume the adversary can establish additional
BGP sessions with such transit providers. These additional
sessions might be used for legitimate purposes or to aid in
the propagation of poisoning announcements (as described in
Section II-C), but the core hijack announcements rely on the
lack of filtering by the main upstream provider mentioned
previously. We assume these additional transit services are
used in a way that does not directly implicate them in
the hijack itself, thus avoiding their specific abuse detection
mechanisms.

B. Fundamental Limitations of Hijack Monitors

Monitor-based defense systems suffer from inherent limita-
tions that stem from the nature of BGP data collection and
analysis, creating vulnerabilities that sophisticated attackers
can exploit.

It is impossible to identify invalid or expired BGP data.
These systems face the challenge of determining data validity

over time. When a new route is observed and classified as
legitimate, there’s no fundamental way to determine how long
it should remain in the knowledge base as valid. BGP paths
vary greatly in their stability—some persist for months while
others are ephemeral. Since the BGP protocol itself provides
no explicit mechanism to signal when paths or links expire,
defense systems must make arbitrary decisions about data
retention. At any point, previously announced paths may still
be valid despite not being currently used, or they might have
legitimately expired.

BGP routes implementing a hijack cannot be distinguished
from policy changes. Monitor-based systems cannot reli-
ably distinguish between actual hijacks and legitimate policy
changes. For any newly observed BGP path, two plausible
scenarios always exist: either the path results from a malicious
hijack attempt or it reflects a legitimate topology change result-
ing from new business agreements or updated BGP policies.
These scenarios are fundamentally indistinguishable from the
perspective of external observers. As a result, these defense
systems must rely on inherently imprecise heuristics based on
factors like AS geography or inferred business relationships
to evaluate route legitimacy.

Hijackers can manipulate BGP data. Lastly, and perhaps the
most critical, attackers can deliberately manipulate the BGP
data that these detection systems rely upon. Since monitors
collect BGP routes without discrimination as to their origin or
legitimacy, adversaries can inject arbitrary routes in addition
to their actual hijack attempts. This capability allows attack-
ers to strategically craft BGP announcements that condition
the knowledge base over time, gradually poisoning it with
seemingly benign routes that later enable undetected hijacks.
Such manipulation requires minimal additional infrastructure
beyond what’s already needed to execute hijacks, and can
remain stealthy if performed gradually with carefully crafted
announcements.

Collectively, these limitations create a fundamental vulner-
ability: monitor-based defenses are forced to operate on data
that may be partially crafted by potential attackers, with no
reliable way to detect when this manipulation is occurring.
This vulnerability undermines the core assumptions of data-
driven BGP security approaches and creates opportunities for
evasion that sophisticated adversaries can exploit.

C. Poisoning Monitors

A fundamental issue with relying on public BGP monitors is
that they primarily act as passive data collectors. They record
the BGP announcements they observe from their peers but
generally do not perform deep validation of the legitimacy or
accuracy of the routing information contained within those an-
nouncements. Their goal is data aggregation, not verification.

This lack of inherent validation poses a significant problem
for ML-based hijack detection systems. These systems often
build their models or knowledge bases by learning from the
historical data collected by monitors, implicitly trusting this
data as a representation of legitimate routing behavior. If the

H

hijacker upstream

N Q

monitor

2.0.0.0/8 - [H, B]

ML System

fetches data

2.0.0.0/8 - [Q, N, H, B]

Fig. 3. Monitor Poisoning Attack: Attacker H announces a prefix with forged
origin B. The announcement propagates via H’s upstream to a monitor. The
ML system ingests this polluted data, corrupting its knowledge base.

underlying data is tainted, the resulting model or knowledge
base will be flawed, leading to inaccurate classifications.

An attacker can exploit this by deliberately ”poisoning” the
data collected by monitors. This involves injecting carefully
crafted BGP announcements designed to mislead the ML
systems that consume this data. The goal is to manipulate the
system’s understanding of normal network topology or routing
policies.

Specifically, an attacker can poison the knowledge base
by announcing a prefix they legitimately control (or a sub-
prefix), but forging the origin AS in the announcement to be
a different, strategically chosen AS. The attacker ensures this
prefix does not have a Route Origin Authorization (ROA) in
the RPKI system, or creates a ROA that includes the forged
origin. Since RPKI deployment is still far from universal
and many prefixes lack ROAs [8], announcements for such
prefixes often result in an RPKI validation state of ’NotFound’.
Many networks do not drop routes with ’NotFound’ status
[24]. Consequently, the poisoned announcement can propagate
through the network, be collected by public monitors, and sub-
sequently ingested by ML-based detection systems, corrupting
their knowledge base with inaccurate information about AS
relationships or path validity. This poisoned data can then be
used by the attacker to make subsequent hijack attempts appear
legitimate or to cause false alarms. The carefully selected
forged-origin AS is typically one not directly connected to
the attacker’s actual infrastructure and is chosen specifically
to appear plausible enough to evade initial detection by the
monitoring system.

Figure 3 illustrates this process. An attacker (AS H) an-
nounces a prefix it controls, but falsely claims AS B as the
origin, an AS to which H is not actually connected. H’s
upstream provider propagates this announcement. A public
monitor receives the announcement from its peer and records
the path containing the forged origin. Subsequently, an ML-
based detection system fetches data from this monitor, in-
gesting the polluted information and potentially adding an
incorrect link or relationship involving AS B to its knowledge
base.

III. EXPLOITING DFOH

A. DFOH Architecture

DFOH (Detecting Forged-Origin Hijacks) is designed to
identify forged-origin BGP hijacks by analyzing AS paths
observed in public BGP data [13]. Its architecture centers
around a three-stage pipeline:

1) New Link Detection: DFOH monitors BGP updates
from public collectors (e.g., RouteViews, RIPE RIS)
and compares observed AS links against a historical
topology graph (built from ≈300 days of data). Links
not present in the historical graph are flagged as “new,”
triggering further analysis, as these often correlate with
hijack events. The core idea is that forged-origin hijacks
often introduce a new, previously unobserved link in the
AS path, typically between the attacker and the (forged)
origin AS.

2) Feature Computation: For each new link, DFOH cal-
culates a feature vector encompassing four categories to
assess legitimacy:

• Topological: Measures the impact of the new link
on AS graph structure (e.g., centrality, neighborhood
changes).

• Peering: Infers peering likelihood based on shared
infrastructure (IXPs, facilities) or geography, using
data from sources like PeeringDB [25] and focusing
on neighbors’ data to resist manipulation.

• AS-Path-Pattern: Evaluates path validity against
routing policy expectations (e.g., Gao-Rexford
valley-free model [26]) using learned models based
on AS degree and customer cone sequences.

• Bidirectionality: Checks if the link is observed in
both directions (using BGP and IRR data), a strong
indicator of legitimacy.

3) Inference: The computed features are fed into a Random
Forest classifier trained to distinguish between legitimate
links and forged-origin hijacks. This classifier is trained
daily using a balanced sampling strategy that clusters
ASes and ensures representative sampling across differ-
ent AS types and potential attack scenarios, mitigating
biases inherent in the AS topology. If multiple paths
contain the new link, results are aggregated.

The system aims to provide timely detection by focusing
analysis on these newly observed links and leveraging a com-
bination of topological, policy-based, and metadata features.
However, as discussed in Section II-B, its reliance on pub-
licly observable data forms the basis for potential adversarial
attacks.

B. Poisoning DFOH’s Knowledge Base

While DFOH aims to detect forged-origin hijacks by iden-
tifying new AS links and analyzing associated features, its
reliance on historical data gathered from public monitors
creates a significant vulnerability - as attackers can manipulate

the data ingested by these monitors. This allows for a knowl-
edge base poisoning attack specifically tailored to circumvent
DFOH’s defenses.

The core principle of the attack is to strategically introduce
carefully crafted, non-existent AS links into DFOH’s historical
topology graph before launching an actual hijack. The goal
is to manipulate the data against which future, malicious
announcements are compared. The methodology involves the
following steps:

1) Identify Poisonous Links: The attacker identifies poten-
tial ”poisonous” ASes. These are typically ASes not di-
rectly connected to the attacker but chosen strategically
to manipulate DFOH’s feature calculations favorably for
a future hijack attempt against a target victim AS. The
attacker leverages the small inherent error rate (false
negatives) of the DFOH classifier, aiming for these
crafted links to be misclassified as legitimate and added
to the knowledge base.

2) Craft Poisoning Announcements: The attacker an-
nounces a prefix they legitimately control (or a sub-
prefix) but forges the origin AS in the BGP announce-
ment to be one of the chosen poisonous ASes (see II-C).

3) Manipulate Feature Scores: The poisonous links are
chosen specifically to degrade DFOH’s ability to detect a
subsequent hijack involving the attacker (H) and a victim
(V). For instance, by poisoning the knowledge base with
links to ASes geographically close to the victim, the
attacker can artificially lower the suspicion score derived
from the PeeringDB features when the actual hijack link
(H, V) appears later. As shown in Table I, features like
PeeringDB carry significant weight in the classification
decision, making them effective targets for manipulation.

4) Execute Hijack: After a sufficient period, allowing the
poisoned data to be incorporated into DFOH’s knowl-
edge base (typically minutes), the attacker launches
the actual forged-origin hijack. The presence of the
previously injected poisonous links makes the new, ma-
licious link appear less anomalous to DFOH’s classifier,
increasing the chance of evasion.

By manipulating DFOH’s input data, attackers can under-
mine its detection capabilities with minimal extra resources,
posing a practical threat.

TABLE I
FEATURE CATEGORY IMPORTANCE SCORES FOR THE DFOH RANDOM

FOREST CLASSIFIER, DERIVED FROM TRAINING ON DATA FROM
2024-03-01.

Feature Category Importance Score
ASPath Patterns 0.59
PeeringDB 0.23
Topological 0.16
Bidirectionality 0.02

C. Experimental Evaluation

To evaluate the effectiveness of the knowledge base poi-
soning attack against DFOH, we conducted a large-scale

simulation-based experiment. The simulations were performed
on a cluster consisting of 2 nodes, each equipped with a
double-socket Intel Xeon Gold 5118 CPU. While attacking
a single target AS requires only a few seconds, the scale of
the experiment - simulating 1,000 attacker ASes targeting each
of the over 80,000 ASes in the internet topology - necessitated
significant computational resources.

We simulated 1,000 attacker ASes, chosen randomly to
represent a diverse set of network types and locations. For each
simulated attacker, we attempted to poison DFOH’s knowledge
base to enable subsequent forged-origin hijacks against all
other ASes. The simulation for each attacker utilized real-
world AS paths observed from public collectors that origi-
nated from the attacker’s AS. This represents a conservative
approach, as many observed paths might be transient and not
reappear, potentially underestimating the attack’s effectiveness
in a real-world scenario where attackers could sustain an-
nouncements.

The poisoning process involved identifying potential false
negatives in DFOH’s classification – links that DFOH would
incorrectly classify as legitimate. From this set, we selected
poisonous links using a heuristic designed to maximize the im-
pact on DFOH’s feature calculations for future hijack attempts.
Specifically, we targeted features with high importance scores,
such as PeeringDB (see Table I), by selecting poisonous ASes
geographically close to potential victim ASes. These crafted
links were then assumed to be injected into the BGP data
stream (as described in Section II-C) and subsequently in-
corporated into DFOH’s historical topology graph after being
misclassified.

During initial simulations, we observed that some stub
ASes, particularly those in remote or poorly connected regions,
exhibited very low false negative rates according to DFOH’s
model. While seemingly positive for detection, this para-
doxically implies that DFOH would likely generate frequent
false positives for legitimate announcements originating from
these networks. From the attacker’s perspective, this finding
initially limited the pool of viable poisonous AS candidates
when targeting certain victims. To address this and model a
more realistic attacker capability, we simulated the scenario
where an attacker acquires additional connectivity through
readily available commercial BGP transit services [22], [23].
By announcing legitimate prefixes through a new provider
connection, the attacker could expand their observed con-
nectivity. Although DFOH’s mechanism would initially flag
and quarantine this new (legitimate) link for a period (30
days), an attacker willing to wait could subsequently leverage
this expanded connectivity, significantly increasing their pool
of potential poisonous ASes for manipulating the knowledge
base. Our final evaluation incorporates this possibility.

Figure 4 presents the results of our simulation incorporating
this enhanced attacker model. The left plot shows the distri-
bution of hijack success rates achieved by each attacker after
the poisoning phase. While the first 400 attackers achieved
success rates below 40%, a significant portion demonstrated
high effectiveness. Notably, over 100 distinct attacker ASes

Fig. 4. Evaluation of the DFOH poisoning attack. Left: Distribution of hijack success rates across 1,000 simulated attackers targeting all other ASes. Each
bin represents the percentage of successful hijacks achieved by one attacker after poisoning. Right: Distribution of the number of poisonous links required
per attacker to achieve their respective success rates.

were able to successfully hijack more than 80% of all other
ASes on the internet after poisoning DFOH’s knowledge base.

The right plot in Figure 4 illustrates the number of poi-
sonous links required to achieve these success rates. Crucially,
the attack often requires only a small number of carefully
chosen links. Approximately 15% of the attackers needed zero
additional links (which represents the false negatives), while
around 14% required only one link and 28% needed two
links. This demonstrates that attackers do not need to inject
a large volume of malicious announcements to significantly
compromise DFOH’s detection capabilities.

These findings highlight the attack’s practicality: by exploit-
ing public data reliance, classification errors, and the potential
to augment connectivity, a few crafted links can severely
degrade DFOH’s hijack detection.

D. Naive Defense

A seemingly straightforward approach to counter the knowl-
edge base poisoning attack might be to remove features from
the DFOH model that are considered easily manipulable. For
instance, given that PeeringDB information can be influenced
by crafted announcements targeting specific geographic or in-
frastructural overlaps (as discussed in Section II-C), one might
consider removing the PeeringDB feature category entirely.

However, this naive defense strategy has significant draw-
backs. Firstly, DFOH’s strength lies in its combination of
diverse feature categories, each contributing uniquely to de-
tection accuracy across different scenarios, as indicated by
their importance scores (Table I). Removing a feature category,
even a potentially vulnerable one, can significantly degrade the
system’s overall performance, leading to lower detection rates
(True Positive Rate) and potentially higher false alarms (False
Positive Rate) for legitimate events.

Secondly, attackers are not necessarily limited to manipulat-
ing only the most obvious features; they can craft announce-
ments to influence topological features or AS-path patterns as
well. A defense strategy based solely on removing features
ignores the potential for broader manipulation and sacrifices
detection capability. Therefore, simply removing potentially

manipulable features is not a robust defense against strategic
poisoning attacks.

IV. EXPLOITING BEAM
A. BEAM’s Architecture

BEAM (BGP sEmAntics aware network eMbedding) is a
system designed to detect BGP anomalies by understanding
the typical behavior of each AS within the Internet’s routing
landscape. Instead of just looking at path changes, BEAM
learns these roles by analyzing the underlying structure of AS
business relationships (like provider-customer or peer-to-peer
links), which fundamentally dictate how routes are propagated
[14].

The core process involves two main steps:
1) AS Graph Construction: BEAM utilizes datasets de-

scribing AS relationships (e.g., from CAIDA [27]) to
build a graph representing the inter-domain topology. In
this graph, ASes are nodes, and directed edges represent
relationships like provider-to-customer.

2) AS Embedding: BEAM then employs a network repre-
sentation learning model to generate a low-dimensional
vector (an embedding) for each AS. This process is
specifically designed to capture two key semantic prop-
erties derived from the AS graph:

• Proximity: This measures how similar ASes are,
considering both direct connections and shared
neighbors (i.e., having similar connections to other
ASes).

• Hierarchy: This captures an AS’s position within
the Internet’s structure, mainly based on provider-
customer links. Tier-1 providers sit high in the
hierarchy, while customer ASes are lower.

The model optimizes these embedding vectors so that
the distance between vectors reflects the difference in
the ASes’ routing roles based on both proximity and
hierarchy. The difference between any two AS roles
can be measured using a function derived from these
embeddings.

BEAM uses these learned AS embeddings to evaluate BGP
route changes. When a new route announcement for a prefix

is observed, replacing a previous path, the system calculates a
path difference score. This score quantifies the overall change
in routing roles between the sequence of ASes in the old path
and the new path. It is computed by comparing the embedding
vectors of the ASes in both paths, often using an algorithm like
Dynamic Time Warping (DTW) which measures the similarity
between two temporal sequences [28].

To determine if a calculated path difference score indicates
an anomaly, BEAM uses a dynamic threshold. This threshold
is not fixed; it is periodically recalculated based on the dis-
tribution of path difference scores observed for route changes
in a recent historical window (e.g., the previous hour). A path
difference score exceeding this dynamic threshold is flagged
as suspicious.

B. Polluting the Threshold

Beyond manipulating the path characteristics themselves,
BEAM’s architecture presents a distinct vulnerability related to
its dynamic threshold mechanism. Unlike the knowledge base
poisoning attack effective against DFOH (Section III), this
attack targets the statistical basis used by BEAM to distinguish
between normal and anomalous route changes.

The core idea of the threshold pollution attack is for
an adversary to inject a controlled volume of crafted BGP
announcements. These announcements are designed to gen-
erate path difference scores that fall just below the current
threshold, thereby initially evading detection. However, these
injected ”slightly abnormal but not anomalous” scores are then
included in the pool of data used to calculate the threshold for
the next time window.

By persistently injecting such announcements, the attacker
artificially inflates the statistics (e.g., mean, standard deviation)
of the path difference scores considered ”normal”. This manip-
ulation forces the system to calculate a higher threshold for the
subsequent period. An elevated threshold makes it easier for
the attacker’s actual malicious announcements, such as those
implementing a hijack (which inherently have significantly
different routing roles and thus higher path difference scores),
to fall below the inflated threshold and avoid being flagged as
anomalous.

An attacker can anticipate or calculate the dynamic thresh-
old because the inputs to its calculation are derived from
publicly observable BGP data. By accessing public BGP
monitoring feeds and potentially having access to a trained
BEAM model or a functional equivalent, an attacker can
observe the same route changes as the detection system and
estimate the resulting threshold. This knowledge allows them
to calibrate their injected announcements effectively for the
pollution attack.

A potential challenge for this attack is injecting a sufficient
volume of announcements within the observation window to
significantly skew the statistics. However, the natural behavior
of BGP provides an amplification factor. Due to routing
oscillations and convergence processes, a single logical route
announcement for a prefix is often repeated multiple times
by routers across the network. Based on measurements from

March 2024 [29], a single prefix announcement was observed,
on average, 6.43 times per hour (with a standard deviation
of 17.79). This inherent repetition means an attacker only
needs to initiate a relatively small number of distinct crafted
announcements, as BGP dynamics will amplify their presence
in the data streams monitored by systems like BEAM, making
threshold manipulation feasible with less effort than might be
initially assumed.

C. Evaluation

We simulated the threshold pollution attack against BEAM
to evaluate its practical impact. The simulation was performed
on a machine equipped with an Apple M3 Pro CPU. We
selected 5 random ASes to act as the attackers. For each
attacker, we simulated the injection of a series of crafted
BGP announcements. These announcements involved mod-
ifying legitimate paths originating from the attacker’s AS
by inserting a forged origin, carefully chosen such that the
resulting path difference score would fall just below BEAM’s
current detection threshold. This strategy aims to have the
announcements classified as legitimate while contributing to
the statistics used for the next threshold calculation.

To model the amplification effect inherent in BGP, we
analyzed real BGP update data from March 2024 [29] specifi-
cally for prefixes announced by the chosen attacker ASes. We
measured the typical oscillation for these prefixes and used
this observed rate to simulate how many times each distinct
crafted announcement would likely appear in the monitoring
data within the relevant time window. We varied the number of
distinct polluting announcements initiated by the attacker from
1 to 50. After injecting the amplified set of announcements
based on the observed oscillations, we recalculated BEAM’s
detection threshold based on the polluted data distribution.
Finally, we determined the percentage of prefixes that could
subsequently be hijacked using a forged-origin attack without
triggering detection under the newly inflated threshold.

The results, illustrated in Figure 5, demonstrate the effec-
tiveness of this approach. We found that for most of the
simulated attacker ASes, initiating just 10 distinct polluting
announcements (amplified according to their observed prefix
oscillation rates) was sufficient to raise the detection threshold
by approximately 5%. This seemingly modest increase in the
threshold translated into a significant practical advantage for
the attacker, allowing them to successfully hijack an additional
10% of prefixes without being detected by BEAM compared
to the baseline scenario without pollution. This highlights the
practical risk posed by threshold pollution attacks, exploiting
the statistical nature of the detection mechanism and the
inherent amplification within BGP.

D. Naive Defense

A seemingly straightforward defense against the thresh-
old pollution attack described in Section IV-B would be to
abandon the global dynamic threshold and instead maintain a
separate, dynamically calculated threshold for each individual
IP prefix. The intuition is that polluting the threshold for

Fig. 5. Effectiveness of the BEAM threshold pollution attack. The plot shows the percentage of prefixes an attacker can successfully hijack (evading detection)
as a function of the number of distinct polluting announcements initiated.

one prefix would not affect the thresholds for others, thus
containing the attack’s impact.

However, this per-prefix threshold approach, while concep-
tually simple, faces significant practical challenges that render
it infeasible for a global monitoring system like BEAM:

• Scalability Issues: The global routing table contains
over one million IPv4 prefixes and over 220,000 IPv6
prefixes (as of mid 2025) [30]. Maintaining, calculat-
ing, and storing a dynamic threshold for each of these
prefixes would introduce immense computational and
storage overhead, making the system difficult to scale
and manage effectively.

• Data Sparsity and Threshold Instability: Calculating
a reliable dynamic threshold requires a sufficient volume
of historical data (legitimate route changes) for statistical
significance. Many prefixes, especially more specific ones
or those belonging to smaller organizations, exhibit very
infrequent route changes. For such prefixes, there would
be insufficient data within typical recalculation windows
(like an hour) to establish a stable and accurate threshold.
Attempting to calculate thresholds with sparse data would
lead to high volatility, causing the threshold to fluctuate
wildly and trigger constant false positives for minor,
legitimate changes or, conversely, become too permissive
and miss actual anomalies.

Therefore, while per-prefix thresholds might theoretically
isolate pollution effects, the practical hurdles related to scal-
ability and the need for robust statistical baselines based on
sufficient data make this approach unworkable for a compre-
hensive BGP anomaly detection system.

V. COUNTERMEASURES

The vulnerabilities exposed in monitor-based defenses ne-
cessitate exploring more robust security strategies. Long-
term solutions aim to fundamentally enhance BGP’s security
architecture. Protocols like BGPSec [10] offer cryptographic
validation of the entire AS path, while alternative archi-
tectures like SCION [31] propose a complete overhaul of
inter-domain routing with security built-in. However, despite

significant research and efforts to incentivize adoption [32],
[33], widespread deployment of such fundamental changes
faces immense practical hurdles due to the scale and inertia
of the existing internet infrastructure. Modifying a protocol as
pervasive as BGP remains a formidable challenge.

Given the slow progress of long-term solutions, short-term
countermeasures focus on mitigating the risks within the
current BGP ecosystem. One direction involves reducing the
transparency of the detection system to potential attackers,
essentially making it a ”blackbox”. By keeping the specific
algorithms, features, thresholds, and potentially the training
data confidential (e.g., in commercial offerings or non-open-
source systems), defenders aim to make it significantly harder
for attackers to probe the system for weaknesses, calculate
false negative rates, or precisely tailor poisoning attacks like
those demonstrated against DFOH and BEAM. However, this
”security through obscurity” approach has inherent limitations.
Determined attackers might still infer system behavior through
careful observation or probing, and it hinders collaborative
security research and independent verification.

Another, potentially complementary, short-term strategy in-
volves augmenting public data with private BGP data feeds or
out-of-band validation mechanisms. Systems like ARTEMIS
[9] exemplify this by combining publicly available monitor
data with routing information directly obtained from the Rout-
ing Information Bases (RIBs) of participating routers. This
allows for cross-validation; if a route change observed publicly
is inconsistent with the private RIB data, it raises suspicion.
However, even incorporating private data is not a panacea.
While ARTEMIS and similar approaches can effectively detect
anomalies for prefixes announced by ASes contributing private
data, their visibility remains limited. Attackers can still exploit
the vastness of the internet topology by using random or
unused ASes, which are unlikely to be covered by private
monitoring arrangements, to inject polluted routes or launch
hijacks. This manipulation can still poison the public data
components relied upon by hybrid systems or evade detection
entirely if the attack path does not traverse the privately
monitored infrastructure.

Fig. 6. Hijack detection rate improvement when using an increasing number
of private monitors, comparing random selection versus best-case selection.

To quantify the potential benefits and limitations of private
monitoring, we simulated its impact on detecting the knowl-
edge base poisoning attacks described earlier. The simulation
was conducted on a machine equipped with an Apple M3
Pro CPU. We modeled scenarios where a varying number of
ASes (from 1 to 1,000) act as private monitors, providing
ground truth for routes they observe. The core logic involved
checking if any of the poisoned links injected during the
simulated DFOH attack (Section III-C) would be directly
observed by one of the designated private monitors. If a
poisoned link involved a direct connection to a private monitor
AS, it was considered detected. We compared two selection
strategies: randomly choosing monitor ASes versus an optimal
(best-case) selection that maximizes visibility into potential
attack paths based on the simulated attack data. As shown
in Figure 6, increasing the number of monitors improves
detection. However, even with 1,000 randomly selected private
monitors — a significant deployment — the detection rate for
poisoned links remained below 3%. This poor performance
stems from the vast scale of the internet topology; with tens
of thousands of ASes, the probability that an attacker’s chosen
AS for poisoning happens to have a direct peering relationship
with one of the randomly placed private monitors is inherently
low. The best-case selection strategy yielded better results,
detecting over 20% of attacks with 1,000 monitors, but still
leaving a large fraction undetected. This highlights that even
substantial private monitoring infrastructure struggles against
attackers who can carefully choose where to inject malicious
announcements, underscoring the challenge of achieving com-
prehensive BGP security through monitoring alone.

VI. RELATED WORK

Securing the Border Gateway Protocol (BGP) has been a
long-standing challenge. The Resource Public Key Infrastruc-
ture (RPKI) represents a significant effort to cryptographically
validate the origin of route announcements [7], [34]. How-
ever, its incomplete deployment and inherent vulnerability to
specific attacks like forged-origin hijacks necessitate comple-

mentary defense mechanisms. Consequently, BGP monitoring
systems, often leveraging public data collectors like Route-
Views [11] and RIPE RIS [12], have become crucial. Early
approaches focused on heuristic-based anomaly detection;
simpler tools like BGPmon [35] and BGPalerter [36] alert
operators to basic events like origin AS changes or RPKI-
invalid announcements. Some systems, such as Cloudflare
Radar [37], incorporate additional data sources like Internet
Routing Registries (IRR), though IRR data limitations regard-
ing consistency and completeness restrict its reliability [38],
[39]. Other systems, like ARTEMIS [9], aim to improve detec-
tion speed and mitigation by combining public monitor data
with private RIB feeds, addressing some limitations of purely
public monitor-based approaches. More recent approaches
increasingly incorporate machine learning (ML) to identify
complex suspicious routing events. Systems like DFOH [13]
utilize ML to detect forged-origin hijacks by analyzing path
features derived from public data.

The application of ML in security domains, however, is
fraught with challenges. Researchers have identified com-
mon pitfalls in the design, implementation, and evaluation of
learning-based security systems, which can lead to unrealistic
performance claims and hinder practical deployment [40]. A
major concern is the vulnerability of ML models to adversarial
attacks, where malicious inputs are crafted to cause misclas-
sification [16], [17]. Evaluating the robustness of ML models
against such attacks is critical, especially in security contexts
[41]. The threat of adversarial attacks against ML specifically
in network security has been surveyed, highlighting the ad-
versarial nature inherent in tasks like intrusion and malware
detection [42].

Within BGP security, research has explored how attackers
can evade monitoring systems. Studies have demonstrated
techniques to launch hijacks, such as sub-prefix hijacks using
communities, that remain hidden from public monitors [43].
Further investigations have analyzed the effectiveness of at-
tackers deliberately crafting BGP paths to avoid propagation to
route collectors, showing that even with expanded monitoring
infrastructure, visibility gaps can persist [44]. While these
works address the fundamental limitations of monitor visibil-
ity, they do not specifically target the vulnerabilities within the
ML models used by modern defense systems. Our work differs
by focusing explicitly on the susceptibility of ML-based BGP
hijack detection systems like DFOH and BEAM to adversarial
manipulation, demonstrating how techniques like knowledge
base poisoning and threshold pollution can undermine their
effectiveness, an area that remains relatively underexplored.

VII. CONCLUSION

This paper investigated the security vulnerabilities inher-
ent in modern, data-driven BGP hijack detection systems
that rely heavily on public monitoring infrastructure. While
these systems, often employing sophisticated machine learn-
ing techniques like those in DFOH and BEAM, represent
advancements, we demonstrated their susceptibility to adver-
sarial manipulation. Our analysis and simulations revealed

that attackers can effectively undermine these defenses by
strategically injecting crafted BGP announcements to poison
knowledge bases or pollute statistical thresholds, allowing
malicious hijacks to evade detection. This vulnerability stems
from the fundamental limitations of relying on passively
collected, publicly available BGP data, which lacks inherent
verification mechanisms.

We examined potential countermeasures, including black-
boxing systems and augmenting public data with private feeds.
While these approaches offer partial mitigation, they are not
foolproof. Security through obscurity has inherent weaknesses,
and even significant private monitoring infrastructure struggles
to provide comprehensive coverage. Our findings underscore
a critical need: securing inter-domain routing requires moving
beyond defenses solely reliant on observing public BGP data
streams. The ease with which this data can be manipulated
necessitates a shift towards more robust, multi-faceted security
strategies that incorporate stronger validation mechanisms and
consider the adversarial nature of the environment in their core
design, ultimately demanding a more holistic approach than
passive monitoring alone can provide.

REFERENCES

[1] K. Butler, T. R. Farley, P. McDaniel, and J. Rexford, “A survey of bgp
security issues and solutions,” Proceedings of the IEEE, vol. 98, no. 1,
pp. 100–122, 2010.

[2] A. Siddiqui, “Not just another BGP Hijack,” https://manrs.org/2020/04/
not-just-another-bgp-hijack/, 2020.

[3] R. NCC, “YouTube Hijacking: A RIPE NCC
RIS case study,” https://www.ripe.net/about-us/news/
youtube-hijacking-a-ripe-ncc-ris-case-study/, 2008.

[4] A. Siddiqui, “KlaySwap – Another BGP Hijack Tar-
geting Crypto Wallets,” https://www.manrs.org/2022/02/
klayswap-another-bgp-hijack-targeting-crypto-wallets, 2022.

[5] R. B. bm, “Hackers emptied Ethereum wallets byreaking the basic
infrastructure of the internet,” 2018.

[6] R. Bush and R. Austein, “The Resource Public Key Infrastructure
(RPKI) to Router Protocol, Version 1,” RFC 8210, Sep. 2017. [Online].
Available: https://www.rfc-editor.org/info/rfc8210

[7] N. Rodday, Í. Cunha, R. Bush, E. Katz-Bassett, G. D. Rodosek, T. C.
Schmidt, and M. Wählisch, “The resource public key infrastructure
(rpki): A survey on measurements and future prospects,” IEEE TNSM,
2023.

[8] D. Madory, “RPKI ROV Deployment Reaches Major Milestone,” https:
//manrs.org/2024/05/rpki-rov-deployment-reaches-major-milestone/,
2024.

[9] P. Sermpezis, V. Kotronis, P. Gigis, X. Dimitropoulos, D. Cicalese,
A. King, and A. Dainotti, “ARTEMIS: Neutralizing BGP Hijacking
Within a Minute,” IEEE/ACM ToN, 2018.

[10] M. Lepinski and K. Sriram, “BGPsec Protocol Specification,” RFC 8205,
Sep. 2017. [Online]. Available: https://www.rfc-editor.org/info/rfc8205

[11] U. of Oregon, “RouteViews Project,” www.routeviews.org/routeviews/,
2024.

[12] R. NCC, “Routing Information Service (RIS),” www.ripe.net/data-
tools/stats/ris/, 2024.

[13] T. Holterbach, T. Alfroy, A. D. Phokeer, A. Dainotti, and C. Pelsser,
“A System to Detect Forged-Origin Hijacks,” in Proc. USENIX NSDI,
2024.

[14] Y. Chen, Q. Yin, Q. Li, Z. Liu, K. Xu, Y. Xu, M. Xu, Z. Liu, and
J. Wu, “Learning with Semantics: Towards a Semantics-Aware Routing
Anomaly Detection System,” in Proc. USENIX Security, 2024.

[15] Cisco Systems, “Thousandeyes,” n.d. [Online]. Available: https:
//www.thousandeyes.com/

[16] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” 2015. [Online]. Available: https:
//arxiv.org/abs/1412.6572

[17] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognition, vol. 84, p. 317–331,
Dec. 2018. [Online]. Available: http://dx.doi.org/10.1016/j.patcog.2018.
07.023

[18] L. Blunk, C. Labovitz, and M. Karir, “Multi-Threaded Routing Toolkit
(MRT) Routing Information Export Format,” RFC 6396, Oct. 2011.
[Online]. Available: https://www.rfc-editor.org/info/rfc6396

[19] J. Scudder, R. Fernando, and S. Stuart, “BGP Monitoring Protocol
(BMP),” RFC 7854, Jun. 2016. [Online]. Available: https://www.
rfc-editor.org/info/rfc7854

[20] T. Shapira and Y. Shavitt, “A deep learning approach for ip hijack
detection based on asn embedding,” in Proceedings of the Workshop
on Network Meets AI & ML, ser. NetAI ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 35–41. [Online].
Available: https://doi.org/10.1145/3405671.3405814

[21] Y. Dong, Q. Li, R. O. Sinnott, Y. Jiang, and S. Xia, “Isp self-operated bgp
anomaly detection based on weakly supervised learning,” in 2021 IEEE
29th International Conference on Network Protocols (ICNP), 2021, pp.
1–11.

[22] “Servperso systems – bgp and lir services for small network operators,”
https://www.servperso.net/, 2025.

[23] “ifog gmbh – web hosting, vps, ip transit, and lir services,” https://ifog.
ch/en, 2025.

[24] R. Bush, “Origin Validation Operation Based on the Resource Public
Key Infrastructure (RPKI),” RFC 7115, Jan. 2014. [Online]. Available:
https://www.rfc-editor.org/info/rfc7115

[25] “The Interconnection Database,” https://www.peeringdb.com/.

[26] L. Gao and J. Rexford, “Stable internet routing without global coor-
dination,” IEEE/ACM Transactions on Networking, vol. 9, no. 6, pp.
681–692, 2001.

[27] “Caida as relationships dataset,” https://www.caida.org/catalog/datasets/
as-relationships/, 2025.

[28] D. J. Berndt and J. Clifford, “Using dynamic time warping to find pat-
terns in time series,” in Proceedings of the 3rd International Conference
on Knowledge Discovery and Data Mining, ser. AAAIWS’94. AAAI
Press, 1994, p. 359–370.

[29] U. of Oregon Route Views Project, “Route views bgp update archive
- march 2024,” https://archive.routeviews.org/route-views.wide/bgpdata/
2024.03/UPDATES/, 2024.

[30] T. Bates, P. Smith, and G. Huston, “Cidr report,” https://www.cidr-report.
org/, 2025, accessed: 2025-04-29.

[31] C. de Kater, N. Rustignoli, and A. Perrig, “SCION Overview,” Internet
Engineering Task Force, Tech. Rep., 2024.

[32] P. Gill, M. Schapira, and S. Goldberg, “Let the market drive deployment:
a strategy for transitioning to BGP security,” in Proc. ACM SIGCOMM,
2011.

[33] T. Hlavacek, I. Cunha, Y. Gilad, A. Herzberg, E. Katz-Bassett,
M. Schapira, and H. Shulman, “Disco: Sidestepping rpki’s deployment
barriers,” in Proc. NDSS, 2020.

[34] Y. Gilad, A. Cohen, A. Herzberg, M. Schapira, and H. Shulman, “Are
we there yet? on rpki’s deployment and security,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), 02 2017.

[35] H. Yan, R. Oliveira, K. Burnett, D. Matthews, L. Zhang, and
D. Massey, “Bgpmon: A real-time, scalable, extensible monitoring
system,” in Proceedings of the 2009 Cybersecurity Applications &
Technology Conference for Homeland Security, ser. CATCH ’09.
USA: IEEE Computer Society, 2009, p. 212–223. [Online]. Available:
https://doi.org/10.1109/CATCH.2009.28

[36] N. G. I. Network, “Bgpalerter,” https://github.com/nttgin/BGPalerter,
2019.

[37] M. Zhang and C. Martinho, “Cloudflare Radar’s new BGP origin hijack
detection system,” https://blog.cloudflare.com/bgp-hijack-detection/,
2023.

[38] D. R. McPherson, S. Amante, E. Osterweil, L. Blunk, and D. Mitchell,
“Considerations for Internet Routing Registries (IRRs) and Routing
Policy Configuration,” RFC 7682, Dec. 2015. [Online]. Available:
https://www.rfc-editor.org/info/rfc7682

[39] B. Du, G. Akiwate, T. Krenc, C. Testart, A. Marder, B. Huffaker,
A. C. Snoeren, and K. Claffy, “Irr hygiene in the rpki era,” in Passive
and Active Measurement, O. Hohlfeld, G. Moura, and C. Pelsser, Eds.
Cham: Springer International Publishing, 2022, pp. 321–337.

[40] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi,
C. Wressnegger, L. Cavallaro, and K. Rieck, “Pitfalls in machine
learning for computer security,” Commun. ACM, vol. 67, no. 11,
p. 104–112, Oct. 2024. [Online]. Available: https://doi.org/10.1145/
3643456

[41] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras,
I. Goodfellow, A. Madry, and A. Kurakin, “On evaluating adversarial
robustness,” 2019. [Online]. Available: https://arxiv.org/abs/1902.06705

[42] O. Ibitoye, R. Abou-Khamis, M. el Shehaby, A. Matrawy, and
M. O. Shafiq, “The threat of adversarial attacks on machine
learning in network security – a survey,” 2023. [Online]. Available:
https://arxiv.org/abs/1911.02621

[43] H. Birge-Lee, M. Apostolaki, and J. Rexford, “Global bgp attacks
that evade route monitoring,” 2024. [Online]. Available: https:
//arxiv.org/abs/2408.09622

[44] A. Milolidakis, T. Bühler, K. Wang, M. Chiesa, L. Vanbever, and
S. Vissicchio, “On the effectiveness of bgp hijackers that evade public
route collectors,” IEEE Access, vol. 11, pp. 31 092–31 124, 2023.

APPENDIX

This appendix offers a few other insights into the work I
did throughout this thesis, covering simulation details, imple-
mentation challenges, and ideas for future exploration.

I. GETTING THE PATHS RIGHT: SIMULATING HIJACK
PROPAGATION

One of the tricky parts of simulating these hijack attacks was
figuring out which paths would actually make it to the public
BGP monitors that systems like DFOH and BEAM rely on.

At first, I tried building a simulator based on the clas-
sic Gao-Rexford model. The result of that was a Python
framework, which could be connected to a React interface
to visualize the propagation of BGP hijacks (as shown in
Figure 7), but it was too theoretical. Real-world BGP is messy
– ASes have their own preferences, use BGP communities,
have hidden policies, and the network is always changing.
The simple model just couldn’t capture all that.

To get a more grounded evaluation, I switched to a more
conservative strategy. Instead of trying to predict propagation,
I looked backward. I gathered all the AS paths observed by
public monitors (RouteViews and RIPE RIS) that originated
from the simulated attacker’s AS over a long period (around
300 days, using data collected by DFOH). By feeding the
defense systems this superset of potentially propagatable paths,
we get a conservative estimate – essentially assuming the at-
tacker could potentially reach any monitor they’ve historically
reached. This avoids the pitfalls of inaccurate propagation
modeling.

II. MAKING DFOH SIMULATIONS BEARABLE:
PERFORMANCE TUNING

Evaluating the DFOH poisoning attack meant running sim-
ulations on a massive scale: testing 1,000 randomly chosen
attacker ASes against each of the roughly 80,000 other ASes in
the March 2024 topology. With each simulation taking several
seconds, the total compute time was looking prohibitive, even
on a 96-core machine.

Digging into the performance bottlenecks revealed the
culprits weren’t the ML parts, but rather specific feature
calculations:

• PeeringDB features: Calculating cosine distances be-
tween large vectors representing AS presence in IXPs
and facilities was slow.

• Topological features: Running numerous graph algo-
rithms on the AS topology also took significant time.

These were originally implemented in Python. To lower the
compute time, I decided to rewrite these parts in C, which
is much faster for heavy computations. The process involved
three main steps:

1) Reverse Engineering: Carefully analyzed the original
code and reviewed the bottlenecks.

2) Rewriting in C: The computationally heavy parts (Peer-
ingDB and topological feature calculations) were re-
implemented in C, using more efficient algorithms and
data structures.

3) Python Bindings: Created a Python library to easily
call the optimized C code from the existing simulation
framework.

This optimization yielded substantial performance gains. As
shown in Figure 8, the PeeringDB feature calculation sped
up by about 13.6x, and topological features improved by a
factor of 21.1x (based on the mean of 100 runs). Crucially,
the overall time for a single attack simulation dropped from
around 6 seconds to just about 1 second. This brought the
total simulation time down from an infeasible duration to a
manageable number of days on the 96-core machine.

Fig. 8. Performance boost from rewriting DFOH’s feature calculation
bottlenecks in C. The optimized C versions significantly outperformed the
original Python implementations, making large-scale simulations feasible.

III. BEAM: CHALLENGES AND POTENTIAL ATTACK
VECTORS

Working with BEAM presented its own set of challenges.
Training the AS embedding model was time-consuming (sev-
eral hours), and reverse-engineering the system revealed po-
tential issues in its design.

One notable observation concerns the generation of training
samples. BEAM uses the CAIDA AS relationships dataset,
treating observed links as positive samples. Negative samples
are generated, in part, by inverting positive samples. For exam-
ple, if ‘AS A - AS B‘ (customer-provider) is a positive sample,
‘AS B - AS A‘ might be included as a negative sample. The
model is trained to decrease the distance between embeddings
of positive pairs and increase the distance for negative pairs.
This creates a conflict: the model simultaneously tries to pull A
and B closer (due to the positive sample) and push them further
apart (due to the inverted negative sample). This design flaw
could lead to suboptimal embeddings, potentially affecting the
model’s performance.

Given these complexities, exploring attacks beyond thresh-
old pollution proved difficult. However, two potential attack
vectors are worth noting:

1) AS Relationship Poisoning: Could an attacker manip-
ulate the input AS relationship dataset to make their AS
appear ”closer” to a target victim AS in the embedding
space? This is non-trivial because BEAM’s path differ-

Fig. 7. Screenshot of the initial BGP propagation simulator interface, based on the Gao-Rexford model. While useful for visualization, it lacked the fidelity
needed for accurate attack simulation.

ence score considers the entire sequence of ASes, not
just the attacker and victim.

2) Path Padding/Pollution: An attacker might try to ma-
nipulate the path difference score directly by padding
the AS path of a hijack announcement. For an attacker
H hijacking victim V’s prefix, they could announce a
path like ‘H - X - V‘, where X is an intermediary AS
chosen specifically to minimize the overall path differ-
ence score calculated by BEAM. The main drawback
is that longer paths are generally less preferred in BGP
routing, potentially limiting the reach and effectiveness
of such a hijack.

IV. FUTURE WORK

Based on the findings and challenges encountered in this
work, several areas for future research emerge:

• Making BEAM Attacks More Feasible: The threshold
pollution attack demonstrated against BEAM worked in
simulation, but it assumes the attacker can easily amplify
their announcements. Future research could explore more
sophisticated ways to inject malicious data or investigate
entirely different attack strategies that might be stealthier
or more practical in the real world.

• Testing Monitor Poisoning in the Wild: The idea that
attackers can poison public monitor data by carefully
crafting BGP announcements needs real-world validation.
Experiments using platforms like PEERING to inject
controlled announcements and see if they actually get
picked up by monitors would provide strong evidence
for (or against) this attack vector’s feasibility.

• Building Stronger Defenses: The vulnerabilities shown
here highlight that defenses relying solely on passively
observed public data might be too fragile. The next
step should be designing and evaluating more robust
countermeasures. This could involve smarter ways to
combine public and private BGP data, exploring different
machine learning models less prone to poisoning, or
developing techniques to cross-validate BGP data using
diverse, independent sources.

