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Abstract

QUIC is a next generation transport layer protocol with fundamental improvements compared
to TCP. In this work we analyze the differences between the two QUIC implementations MsQuic
and Quinn under different networking conditions and compare them to the TCP-Stack with iPerf3.
We find that increasing the segment size for Quinn increases it’s performance in all test scenarios up
to doubling it’s performance in the best cases. By adding packet loss or reordering to the network
we observe that MsQuic outperforms Quinn by at least 50% in non-ideal conditions.
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Chapter 1

Introduction

1.1 Motivation

Quic is a new transport layer network protocol, which has been standardized in 2021 by the IETF
[2]. Many big stakeholders of the internet have deployed QUIC alongside their traditional TCP
stack [9] and active research is being done around QUIC. To overcame protocol ossification QUIC
was developed as a user-space transport building on UDP [3]. While QUIC has many new features
like 0/1-RTT fast handshake, stream multiplexing for the removal of head-of-line blocking, and
connection migration, it’s user-space design gives new challenges (see section 2.1). While QUIC is
usually faster in smaller file transfer were the connection setup cost is higher relative to the transfer
time [9]. Research has found that for fast internet connection TCP is generally faster than QUIC
due to processing overhead [10]. In this processing overhead is the factor that QUIC is always
encrypted, which makes a big part of it’s processing time [8].

But all these researches are done at a certain point in time in a certain environment with
certain implementations. While these implementations aren’t as mature as linux’s TCP implemen-
tation, they are constantly developed further (for better or worse) and thus can these results give
no guarantee of the actual state of the many implementations of QUIC. Therefore a continuous
benchmarking is needed over the implementations that guarantees comparable results.

1.2 Task and Goals

On the way to achieve the continuous benchmarking we have to to build a framework which shows
differences in implementations. The framework should be easily extendable to new implementations
and be easy to automate. Finally the framework should output analytical numbers which can be
interpreted by humans or machine. To test the basic framework we build our own basic bench-
marking tools using various implementations. In the end we tried to find specific programming
differences in the implementations that made them faster or slower in specific cases, which could
be adopted by other implementations to improve their performance.

1.3 Overview

In Section 2 we talk about QUIC and it’s fundamentals. We then continue to explain the structure
and setup of the framework in section 3. After this in section 4 we look at the results we found using
the framework. Finally in section 5 we look back and discuss the current state of benchmarking
QUIC, our results and what future work can improve on this work.
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Chapter 2

Background and Related Work

2.1 Background

QUIC is a user-space transport that comes with enforced encryption. Originally developed by
Google and later adopted by the IETF [2]. QUIC was developed on top of UDP to overcome
middleboxes which can interrupt the flow of unknown protocols. Being developed in user-space
means that it can get updated independently of the kernel and receive updates faster. QUIC has
been developed to improve on TCP with various features that would make it faster, more reliable
and more secure. It can setup a connection faster than TCP because it uses a 0/1-RTT fast
handshake principle, where it combines the mandatory cryptographic (since QUIC must always be
encrypted) and transport handshake in one round trip and on later connection to a cashed origin
send encrypted data wit no additional round trip. QUICs Stream multiplexing makes it so that
on packet loss only the stream of the loss packet is affected while the other streams can continue
to be reassembled in contrast to TCPs single bytestream. QUIC supports connection migration
by attaching a Connection ID to each connection to allow identifying a connection despise changes
to the clients IP and port. But living in user-space also comes with downsides as data has to be
copied between user-space and kernel space which requires expensive syscalls. The encryption, the
exchange between kernel and user-space and implementation specific code lead to more processing
power usage compared to TCP [7] and this reduces the throughput of QUIC. The kernel has added
support for UDP/QUIC in form of Generic Segmentation Offload (GSO) and Pacing to mitigate
this issue. GSO allows the application to send segments bigger than the MTU to the socket which
will then be broken down to MTU sized packets. Pacing is used to mitigate congestion from bursty
traffic especially when used in combination with GSO as the application can not control the exact
time a packet leaves the interface.

2.2 Related Work

Measurements: In QUIC is not Quick Enough over Fast Internet [10] the authors compare
QUIC with TCP over fast internet (>500 Mbps). They show that TCP has an advantage over
QUIC due to QUICs excessive data packet and QUIC’s distinctive user-space ACKs but don’t
use features like ACK-Frequency and GRO. In Dissecting Performance of Production QUIC [9]
they compare the performance of different production deployed QUIC servers, they find that the
performance is influenced by servers choice of congestion control algorithm and configuration tuning
of the clients. A High-Speed QUIC Implementation [7] bypasses the Linux kernel networking stack
by using the DPDK library and compares it with against other QUIC implementations and the
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2.2. RELATED WORK 3

TCP+TLS stack. They find that it outperforms all tested QUIC stacks and matches TCP+TLS
with common optimizations but their implementation and measurements are limited to only one
core.

Features: Optimizing UDP for content delivery: GSO, pacing and zerocopy [1] talks about
the optimizations to the UDP stack like GSO/GRO, zerocopy and pacing and how these features
can significantly reduce cycle cost. In Bandwidth-Delay-Product-Based ACK Optimization Strat-
egy for QUIC in Wi-Fi Networks [4] designs an ACK frequency optimization scheme to improve
performance and reduce operation cost with a focus on Wi-Fi-enabled IoT communications. In
Making QUIC Quicker With NIC Offload [8] analyze different QUIC implementations and cost of
it’s component and upon this propose a design for Network Interface Cards but doesn’t regard
features like GSO and Pacing. Finally in ECN with QUIC: Challenges in the Wild [6] finds that
only less than 2% of the QUIC hosts passes their ECN validation test.

For a overview of QUIC and it’s deployment the paper The QUIC Transport Protocol: Design
and Internet-Scale Deployment [3] was consulted.



Chapter 3

Testing Framework

This sections gives an overview of the testing environment, what problems arose and what the
limitations are. This should help to put the results better into perspective of what they mean and
how they are to be taken for future works.

3.1 Testbed

The entire test setup is run on a single VM using Ubuntu 24.04 and Kernel 6.8.0. To simulate a
network between the server application and the client application a network namespace is created
using ip netns in which tc qdisc netem is used for traffic conditioning like delay, packet loss and
reordering rate. Furthermore the VM has 2 pinned CPUs which were shielded from the OSs task
scheduler. This allows us to execute the client and the server each on their own CPU without getting
interrupted by the OS and give more consistent results. We intend to replicate a realistic scenario,
which means setting of the loopback MTU size to 1500, but due to a bug in MsQuic Custom (see
3.2) the MTU size for the loopback interface has to be set to 1600. To capture the traffic we use
tcpdump and analyze the resulting pcap with pyshark in python. Furthermore strace/ltrace and
perf are used to collect system/library calls and produce flamegraphs.

3.2 Implementations

The implementations under testing are MsQuic developed by Microsoft and Quinn founded by
Dirkjan Ochtman and Benjamin Saunders. MsQuic is developed in C and Quinn was developed
in Rust. Both repositories provide a benchmarking tool developed by themselves. But to have
more control over what is happening we decided to develop our own minimalistic benchmarking
tools for each implementation. These will be called ”MsQuic Custom” and ”Quinn Custom”. To
get verification for our benchmarking tools the individual implementations benchmarking tool are
also integrated in the measurements, which will be called ”MsQuic Official” and ”Quinn Official”
respectively. These have no settings tuned and are used out of the box. During the project a
potential inefficiency in Quinn was discovered. The experimental patch is only applied to Quinn’s
official benchmarking tool called ”Quinn Official patched”.

3.2.1 Settings

We try to set the settings as close to each other as possible to get the best possible comparison of
implementation details and not compare differences in settings. Therefore all tools are set to use
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cubic, since we don’t want to measure differences in congestion control algorithm. Furthermore
all tools had encryption disabled since it is known encryption uses a lot of CPU [8] and we don’t
want to compare the encryption algorithm. MsQuic Custom and Quinn Custom have their settings
synced but the changes were minimal, see table 3.1 (”-” means no equivalent setting available) and
results would be very close to equal had the defaults of each application been used. The window
and buffer sizes of each custom implementation are set individually as e.g. increasing their size
increased throughput in Quinn while showing no performance difference in MsQuic. The official
benchmarking tools have their windows set to the default values.

Setting MsQuic Quinn

MinimumMtu 1248 1248
MaximumMtu 1500 1500

MaxAckDelayMs in ms 200 -
IdleTimeoutMs in ms 2000 2000

StreamRecvWindowDefault in Bytes 65536 30’000’000
receive window in Bytes - 4’294’967’295
send window in Bytes - 10’000’000

datagram receive buffer size in Bytes - 30’000’000
datagram send buffer size in Bytes - 30’000’000

Table 3.1: Settings and window sizes

3.2.2 Patch

Both implementations support GSO and therefor send segments that are bigger than the MTU to
the socket. During the analysis of Quinn’s packet stream we noticed that the biggest segments were
only around 15KB. Looking through the code of Quinn, we find that they hardcode a limit of 10
times the estimated MTU size, which explains the 15KB. The patch only changes this hardcoded
limit to 40 times estimated MTU size to get a segment size of 60KB. The authors of Quinn noted
that the 10 times limit was benchmarked to be optimal, but it goes against our intuition since bigger
segments would mean less packet processing overhead like system calls and copying. MsQuic reaches
a maximum segment size of 65KB.

3.3 Limitations

We limit ourselves to a very basic setup. So bugs which reside in the implementations or tools
used were not hunted down. Also didn’t we verify that the implementations were following the
QUIC protocol correctly but just trusted the developers. Also did we try to avoid the influence of
Congestion Control Algorithm (CCA) as good as possible, wile they are an important part, they
are regarded as a separate entity of the implementations and is not in the scope of our work. What
we could do, but didn’t do, was counting CPU cycles or relating performance to CPU usage, more
on this in 5.2. Further did we limit ourselves to the default settings with exceptions, since these
settings can take on many mutations with varying impact on our results. Tuning these settings to
be the ”best” in our case would take an excessive amount of time with no guarantee that it would
not render the implementation unusable in another scenario.



Chapter 4

Evaluation

This section contains the measurements of a single download of varying sizes performed under
different environment conditions like delay, loss and reordering.

4.1 Base Performance

First we look at the case where we download 1GB under no bandwidth restriction and perfect
environment variables, meaning no more delay than the loopback interface has internally and no
artificially added loss or reordering.

Figure 4.1 shows that the traditional tcp stack is able to reach 3 times higher throughput than
it’s best QUIC counterpart. Then there is another big gap between the patched version of Quinn
and all other implementations. This shows that the patch for Quinn benefits Quinn heavily in this
scenario, since both official Quinn implementations use the same settings. The benefit of the patch
is that the implementation has to send roughly 4 times less segments to the socket which cost a
syscall each, as one can see in figure 4.2. Further one can see that the both MsQuic implementations
and the Quinn Official patched implementation send about the same amount of segments, which is
to be expected since all three try to send segments around the size of 65KB to the socket. iPerf3
also sends segments of around 64KB in size, but has many more smaller packages in between the
bigger ones, which makes the noticeable difference. The relative difference of segments send and
received between tools stay more or less the same across all measurement and will therefore not be
looked at anymore.
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4.2. INFLUENCE OF DELAY, LOSS AND REORDERING 7

The situation changes when we limit the maximal available bandwidth. Figure 4.3 shows that
under restricted bandwidth every implementation is more or less equally fast due to reaching the
limited bandwidth equally fast.

Remark: Note that in figure 4.1 and figure 4.3 MsQuic Custom has a delayed start in all
measurements. This is known bug in our benchmarking tool, which could not be fixed in time
for the report. The delay varies but normally is around 0.5 seconds, it is not subtracted from the
times.
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Figure 4.3: Throughput with 1000Mbps bandwidth limit

4.1.1 strace

We use strace to get some information about the implementations behavior. While more system
calls do not necessarily mean worse performance, they could indicate a point of improvement. In
table 4.1 we see the most time consuming syscalls made by the server in the unrestricted mea-
surement in 4.1. One difference is time spent with syscalls. Comparing MsQuic in table 4.1c with
Quinn in table 4.1a, MsQuic spents 3 times more time with syscalls than Quinn. An important
aspect of the syscalls are the I/O syscalls (marked in bold) which are responsible for communicat-
ing with the socket and make the biggest portion of the total syscalls. Looking at them for the
two different implementations shows that Quinn has double the amount of I/O calls. Which are
directly related to the amount of segments Quinn sends in comparison to MsQuic (see figure 4.2),
because comparing Quinn with the patched version in table 4.1b, which sends approximately the
same amount of segments as MsQuic, shows a much lower amount I/O calls and also spends less
time with syscalls, further indicating a benefit of sending less but bigger segments.

4.2 Influence of Delay, Loss and Reordering

Taking a step closer to the real world, this section inspects the influence of delay, loss and reordering
on each implementation. Each test downloads 200MB with different network conditions and a
1000Mbit/s bandwidth. The 200MB is chosen, because it would allow for the implementations to
reach their I/O-Limit and then analyze the impact of delay, loss and reordering. A further benefit
of having a bigger download is to increase packet loss/reordering, since a too low packet count
could lead to no loss at all.
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% Time Seconds Calls Syscall

95.59 0.567138 71824 sendmsg
3.82 0.022683 4460 recvmmsg
0.34 0.002042 866 epoll wait
0.06 0.000357 1 execve
0.05 0.000276 12 setsockopt
0.03 0.000176 18 mmap
0.01 0.000057 7 read

...

99.42 0.589878 76291 total I/O calls
100.00 0.593317 77307 total

(a) Quinn

% Time Seconds Calls Syscall

93.93 0.186980 19065 sendmsg
4.84 0.009633 3681 recvmmsg
0.77 0.001537 921 epoll wait
0.14 0.000283 12 setsockopt
0.08 0.000154 18 mmap
0.03 0.000062 18 write
0.03 0.000056 7 read

...

98.8 0.196678 22753 total I/O calls
100.00 0.199067 23815 total

(b) Quinn Patched

% Time Seconds Calls Syscall

44.93 0.869767 103 futex
37.57 0.727442 8516 epoll wait
11.22 0.217295 15482 sendmsg
3.86 0.074775 17024 recvmmsg
1.35 0.026145 30539 gettid
0.35 0.006829 1987 read
0.17 0.003232 1744 lseek
0.10 0.001900 731 rt sigprocmask
0.07 0.001270 125 mmap

...

15.43 0.298723 34493 total I/O calls
100.00 1.935990 77636 total

(c) MsQuic

Table 4.1: Syscalls by each server

4.2.1 Delay

Starting off with only measuring the impact on implementations when we introduce 10ms of delay
into the network and download a 200MB File. In figure 4.5 one can see that Quinn Custom
still performs at the bandwidth limit while all other implementations start to fall of and other
measurements showed that they would fall off even further with more delay. Quinn Custom can
still perform because it has it’s window sizes set to 30MB each. Which is not a realistic scenario,
but works in our testing environment. MsQuic does not allow to configure it’s send window and
increasing the receiving window did not affect this benchmark. On the other hand Official Quinn
patched did not perform better than the base version. During this measurement we experimentally
increased the window size of iPerf3 to 60MB which would allow it to reach the bandwidth limit,
but following tests with packet loss were no longer possible, which resulted in using the default for
all measurements.

We think this difference in performance does come from two sources. For one, the different
maximal achievable window sizes do seam to play a role in the peak throughput, because Quinn
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Figure 4.5: Throughput during down-
load with 10ms delay

Custom has the window sizes (sending and receiving) set the highest and also performs the best
here. MsQuic seems to use a dynamic sending window [5], which even outperforms iPerf3. On the
other hand we don’t believe that Quinn is unable to transfer more than 500Mbit/s over a fairly
quick link. Therefore we expect that there is a unexpected behavior going on with our setup of
Network-Namespace, Network-Emulator and Quinn, which we could not identify, more in 5.2.

4.2.2 Loss

We next add packet loss to our network emulator. Since netem requires delay to be present to
emulate packet loss and reordering, the following measurements are done with 10ms delay and
varying packet loss.
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with 0.1% packet loss
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Comparing the times with loss rate of 0 and 0.1 in figure 4.4 figure 4.6, it shows that Quinn
handles loss very badly. Official Quinn patched, the fastest version of Quinn in this case, is 3 times
slower than MsQuic. While the unpatched versions can go up to 5 times slower than MsQuic. It
also shows that Quinn’s time has a much higher deviation. We continue the measurements with
higher loss rates in figure 4.7 but without the Quinn benchmarks since they would not be able to
complete the download in a timely manner. We see that MsQuic Custom download time explodes
with 0.5% loss rate, but this appears to be a bug or miss configuration, since MsQuic Official
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handles the packet loss as good as iPerf3.
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Figure 4.8: Throughput during down-
load with 0.1% packet loss
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Figure 4.9: Throughput during down-
load with 0.1% packet loss zoomed in

Looking into the throughput in figure 4.8 (or figure 4.9 for a zoomed in version) shows that
after an initial rise to peak throughput the loss causes the throughput to fall off and then never
recover above a stable point. While MsQuic also has this behavior, it doesn’t fall off that much.
iPerf3 shows to be the most resilient with keeping it’s throughput almost the same as with no loss.

As with delay, we don’t think this behavior can be normal for Quinn. At the same time MsQuic
is showing that it can handle the network conditions quiet as good as iPerf3. What could be a reason
is that the default window sizes of Quinn are too big. Which would then mean that the response
for the packet loss could take too long, which would result in packets arriving but considered loss
since they arrived too late, which would then explain the downwards spiral of Quinn.

4.2.3 Reordering

This measurement follows the same setup as the previous one for the same reason. Adding 0.1% of
packet reordering to the stream instead of loss should lead to an increased performance. Figure 4.10
shows that this is the case for MsQuic and iPerf3. MsQuic gained close to 20% performance boost
while iPerf3 performed only 5% better. Here we also continue the benchmark with higher reordering
rate without the Quinn benchmarks for the same reason as previously. Figure 4.11 shows that
MsQuic Custom and Official are able to deal better with packet reordering than iPerf3.
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with 0.1% packet reordering
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load with 0.1% packet reordering
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Figure 4.13: Throughput during down-
load with 0.1% packet reordering
zoomed in

Looking at the throughput in figure 4.12 (zoomed in figure 4.13) it shows the same behavior for
Quinn as when it handles loss, the throughput rises and then starts to fall off and doesn’t recover.
In comparison MsQuic manages to hold it’s throughput high. iPerf3 which was marginally affected
by lower loss rates, is even less affected by reordering at reordering rates. The reasoning follows
the same as with loss.

4.2.4 Conclusion

Concluding all the test results show that there are big differences between all implementations
including iPerf3. While iPerf3 with it’s TCP stack still dominates in unrestricted pure performance,
our tests show that in Quinn’s case a simple patch to increase the segment size can not only increase
the throughput massively but also reduce syscalls and related costs. We also learn that in Quinn’s
case tuning window/buffer sizes can lead to better results when working with delay. The most
notable difference in performance between the implementations is when packet loss or reordering
occurs. MsQuic handles packet loss much better than Quinn resulting in over 400% faster download
in the best case and still over 50% faster download in the worst case. Performance with packet
reordering show similar results. Finally, throughout all tests the patch for Quinn performed equally
or better than the non-patched version.



Chapter 5

Outlook

In this Chapter we conclude what we learned throughout the work and look into what would be
the next steps to dig deeper into the problem of what makes implementations better or worse in
certain situations.

5.1 Lessons Learned

Here we recap in short form our experience we gathered from this work and the findings we made.
Lesson #1: Working with QUIC still requires a somewhat high expertise. While documenta-

tions for each implementations exist, they all are very programming specific and can miss specific
information which then requires one to look into the source code or benchmarking. The absence of
bigger reference projects don’t support this point.

Lesson #2: Emulating the network works quite well in our setup, but it always leaves a amount
of uncertainty about the results. For a final and conclusive setup a hardware setup is advised.

Lesson #3: From our results, we saw that the window sizes have a great influence on the
throughput performance. Also can they influence the recoverability of packet reordering and loss.
MsQuic doesn’t allow to set the max window size while Quinn allows it, which in return is one
parameter more the developer has to tune. What approach is preferable in the long run time will
show.

Lesson #4: Throughout all measurements sending less but bigger segments to the socket has
a positive impact, from higher throughput, to faster downloads in unstable networking conditions
and less syscalls. This is something developers should always look into when implementing QUIC.

5.2 Future Work

In this last section we discuss the various ways this work can be extended or be improved on.
The framework can be extended in all ways imaginable, but it is laid near to improve on the
current measurements we have. While current measurements show which implementation is faster,
it doesn’t relate it to CPU performance. Measuring CPU performance in relation to throughput
would allow one to scale the results and perhaps uncover wasted cycles in the implementation. In
the same line of thought is to implement multiple connection into the benchmarking tools to bring
the server to the limits. Both official benchmarking tools of MsQuic und Quinn offer this, but
both may need some tweaking to fit our framework. And finally, to remove our uncertainty if our
network setup is influencing the results in unexpected manner, we advice to fit this setup to two
hardware computers.
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