
2020Networked Systems Group

Rui

Maria

Roland

Romain

Edgar

Ege

Tobias

Alexander

Rüdiger

Thomas

Laurent

Roland

Coralie

Albert

O
nline will surely be one of the adjectives of 2020.

Even for our group working on computer networks,

I must confess this was more of a bug than a feature.

While switching to online lecturing, conferences, and

meetings illustrated once more the importance of Internet

connectivity (and, hence, of our research), it also made clear

that online activities can only complement, not replace,

in-presence ones. Teaching and research go beyond “Zoom”.

Yet, despite everything, 2020 was a good year for our group.

Teaching-wise, our lectures were, once again, highly rated by

the students and I was honored to receive the “Credit Suisse

Award for Best Teaching”. Research-wise, we published

no less than 9 papers (including 1 sigcomm, 3 nsdi, and

2 hotnets)—2 of which further went on winning awards.

Group-wise, we welcomed 3 new students (Rui, Ege, and

Roland) and 1 post-doc (Romain), bringing us to 14 members!

Like many, I hope 2021 will mark a return to normality. I

particularly look forward to coming back to the classroom,

brainstorming with students, meeting with my colleagues

(who knew one can miss faculty meetings?), and travelling

to conferences (arguably much less than before, but still).

Whatever happens though, 2021 ought to be an exciting year

for our group as 3 of our phd students (Maria, Thomas, and

Rüdiger) will graduate. Needless to say, we also have plenty

of cool new research ideas in our pipeline. So . . . stay tuned!

Laurent Vanbever

Professor, ETH Zurich

https://nsg.ee.ethz.ch
https://nsg.ee.ethz.ch/people/rui-yang/
https://nsg.ee.ethz.ch/people/maria-apostolaki/
https://nsg.ee.ethz.ch/people/roland-meier/
https://nsg.ee.ethz.ch/people/romain-jacob/
https://nsg.ee.ethz.ch/people/edgar-costa-molero/
https://nsg.ee.ethz.ch/people/ege-cem-kirci/
https://nsg.ee.ethz.ch/people/tobias-buehler/
https://nsg.ee.ethz.ch/people/alexander-dietmueller/
https://nsg.ee.ethz.ch/people/ruediger-birkner/
https://nsg.ee.ethz.ch/people/thomas-holterbach/
https://nsg.ee.ethz.ch/people/laurent-vanbever/
https://nsg.ee.ethz.ch/people/roland-schmid/
https://nsg.ee.ethz.ch/people/coralie-busse-grawitz/
https://nsg.ee.ethz.ch/people/albert-gran-alcoz/

Photo: Oliver Bartenschlager ETH Tag 2020

Teaching 2020 was both a particularly busy and fulfilling year for us.

Besides transitioning to online lecturing, we completely

redesigned our “Advanced Topics in Communication

Networks” course, not only revising the materials but also

developing a new class-wide project. It was a lot of work,

but we are very pleased with the results. Students seem to

be happy too as our teaching evaluations were very positive,

with an average rating of 4.5/5.0 and a median of 5.0/5.0.

Besides, 2020 was particularly successful as I was honored

to receive the “Credit Suisse Award for Best Teaching”. This

prize is awarded by eth students to one professor each year.

While we are not chasing awards, we are obviously thrilled:

with our 2 “Golden Owls” in 2016 and 2018, this is already

the third teaching award we receive in my 6 years at eth!

Having to teach online allowed me to learn a lot

about video streaming. I continuously refined my

video setup over the weeks (inspired by various

YouTubers). Among others, I got myself a green

screen (enabling me to “blend myself” in my slides),

a good microphone, and a decent lighting setup.

As our society continues to ask for more videos

(also post-COVID), I see this acquired knowledge as

a positive outcome of the situation—one of the few.

Photo: Laurent Vanbever My video setup

Research Our most common research topics this year were (still)

network verification, network programmability, and routing.

Regarding verification and programmability, our focus

nowadays is on making the technologies more general, more

practical, and more usable. We want to allow operators to

verify and program more of their networks, in a user-friendly

manner. In the context of (Internet) routing, we work mainly

on making distributed protocols more flexible and secure.

We continued to garner a strong foothold in top venues such

as acm sigcomm, usenix nsdi, and acm hotnets. This

year actually marked the 7th year in a row we published at

least one hotnets paper. Two of our publications further

won awards: our sigcomm paper “Probabilistic Verification

of Network Configurations” won the best student paper

award, and our ccr paper “An Open Platform to Teach How

the Internet Practically Works” won the “best of ccr” award.

2020 was also busy regarding community service. Among

others, I served in the program committee of usenix nsdi

(writing >20 reviews). I also served as tutorial chair for

acm sigcomm (with Dr. Stefano Vissicchio from ucl) and

as program chair of spin, the first workshop on secure

programmable data planes (with Prof. Ang Chen from Rice).

We have plenty of exciting research in our pipeline and look

forward to sharing it with you in 2021. Among others, we are

working on: network anonymity, seamless network updates,

network monitoring, configuration synthesis, fast network

convergence, and “machine learning meets networks”.

I had a lot of fun preparing and giving the keynote at

the 3rd P4 Workshop organized in Europe (EuroP4).

I spoke about our recent works on making packet

scheduling programmable and on offloading routing

tasks to hardware. The talk is online—check it out!

EuroP4 Keynote Watch online

https://www.youtube.com/watch?v=B4jvkbAGiZw&feature=youtu.be
https://www.youtube.com/watch?v=B4jvkbAGiZw&feature=youtu.be

Network verification

Probabilistic Verification of Network Configurations
Samuel Steffen

ETH Zurich, Switzerland
samuel.steffen@inf.ethz.ch

Timon Gehr
ETH Zurich, Switzerland
timon.gehr@inf.ethz.ch

Petar Tsankov
ETH Zurich, Switzerland
petar.tsankov@inf.ethz.ch

Laurent Vanbever
ETH Zurich, Switzerland

lvanbever@ethz.ch

Martin Vechev
ETH Zurich, Switzerland

martin.vechev@inf.ethz.ch

ABSTRACT
Not all important network properties need to be enforced all the
time. Often, what matters instead is the fraction of time / probability
these properties hold. Computing the probability of a property in
a network relying on complex inter-dependent routing protocols
is challenging and requires determining all failure scenarios for
which the property is violated. Doing so at scale and accurately
goes beyond the capabilities of current network analyzers.

In this paper, we introduce NetDice, the first scalable and accu-
rate probabilistic network configuration analyzer supporting BGP,
OSPF, ECMP, and static routes. Our key contribution is an inference
algorithm to efficiently explore the space of failure scenarios. More
specifically, given a network configuration and a property ϕ, our
algorithm automatically identifies a set of links whose failure is
provably guaranteed not to change whether ϕ holds. By pruning
these failure scenarios, NetDice manages to accurately approxi-
mate P(ϕ). NetDice supports practical properties and expressive
failure models including correlated link failures.

We implement NetDice and evaluate it on realistic configurations.
NetDice is practical: it can precisely verify probabilistic properties
in few minutes, even in large networks.

CCS CONCEPTS
• Mathematics of computing→ Probabilistic inference prob-
lems; • Networks→ Network properties.

KEYWORDS
Network analysis, Failures, Probabilistic inference, Cold edges

ACM Reference Format:
Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and Martin
Vechev. 2020. Probabilistic Verification of Network Configurations. In An-
nual conference of the ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and protocols for computer
communication (SIGCOMM ’20), August 10–14, 2020, Virtual Event, NY, USA.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3387514.3405900

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3405900

100 102 104 106 108 1010

states

10−4

10−2

100

im
pr

ec
isi

on

four 9s guarantee
random sampling
partial exploration
this work

Figure 1: Comparison of approaches for probabilistic network anal-
ysis in a network with 191 links and link failure probability 0.001.
The confidence for sampling (Hoeffding’s inequality) is α = 0.95.

1 INTRODUCTION
Ensuring network correctness is an important problem that has
received increased attention [1, 4, 12, 16, 19, 31, 40]. So far, existing
approaches have focused on verifying “hard” properties, producing
a binary answer of whether the property holds under all or a fixed
set of failure scenarios.

Besides hard properties, network operators often need to reason
about “soft” properties1 which can be violated for a small frac-
tion of time (e.g. 0.01%). Among others, allowing properties to
be violated allows for cheaper network designs, e.g. by reducing
over-provisioning. Soft properties typically emerge when reasoning
about compliance with Service Level Agreements (SLAs). SLAs can
be defined with respect to any metric (e.g. path availability, average
hop count, capacity) and are traditionally measured in “nines”: For
instance, an IP VPN provider might guarantee internal path avail-
ability between its customers for 99.999% (five 9s) of the time, and
two-path availability for 99.99% (four 9s).

Similarly to verifying hard properties, computing the probabil-
ity of a soft property requires analyzing the network forwarding
behavior emerging from a network configuration (i.e. the network
control plane) in many, possibly all, environments (e.g. failure sce-
narios). A key difference is that verifying a hard property aims at
checking the absence of a counter-example (e.g. a failure scenario
in which the property is violated), not at computing how many

1This need is exemplified by a survey we conducted amongst network operators (52
answers). In this survey, 94% of operators indicated that they care about probabilistic
network analysis. At the same time, 83% of them indicated that it is currently difficult
to do so. See App. A.1 for details.

ACM SIGCOMM 2020 Read online

3

Network verification is all about guaranteeing that

a network enforces some important properties

such as reachability or isolation. Not all properties

need to hold all the time though: often what

matters instead is the amount of time each property

holds—that is, their probabilities. Such probabilistic

properties often appear naturally in the context of

Service Level Agreements. In this paper, we show

how to accurately compute these probabilities.

Config2Spec: Mining Network Specifications from Network Configurations

Rüdiger Birkner1 Dana Drachsler-Cohen2∗ Laurent Vanbever1 Martin Vechev1

1ETH Zürich 2Technion

Abstract
Network verification and configuration synthesis are promis-
ing approaches to make networks more reliable and secure
by enforcing a set of policies. However, these approaches re-
quire a formal and precise description of the intended network
behavior, imposing a major barrier to their adoption: network
operators are not only reluctant to write formal specifications,
but often do not even know what these specifications are.

We present Config2Spec, a system that automatically syn-
thesizes a formal specification (a set of policies) of a network
given its configuration and a failure model (e.g., up to two
link failures). A key technical challenge is to design a syn-
thesis algorithm which can efficiently explore the large space
of possible policies. To address this challenge, Config2Spec
relies on a careful combination of two well-known methods:
data plane analysis and control plane verification.

Experimental results show that Config2Spec scales to min-
ing specifications of large networks (>150 routers).

1 Introduction

Consider the task of a network operator who—tired of human-
induced network downtimes—decides to rely on formal meth-
ods to verify her network-wide configurations [4,14,22,30] or
to synthesize them automatically [5, 9, 10, 28, 29]. The opera-
tor quickly realizes that both verifiers and synthesizers require
a specification of the correct intended network-wide behavior.
A few generic requirements quickly come to mind: surely
she wants her network to ensure reachability. At the same
time, she realizes that her network does way more than just
ensuring reachability. Among others, it needs to enforce load
balancing for popular destinations, provide isolation between
customers, drop traffic for suspicious prefixes, and reroute
business traffic via predefined waypoints—all these under
failures and over hundreds of devices. Writing the precise
specification seems daunting, especially as most of it has been

∗Work done while at ETH Zürich.

homegrown over years, by a team of network engineers (some
of which do not even work there anymore).

This situation illustrates the difficulty of writing network
specifications. Akin to software specifications, formal spec-
ifications are hard to write (as hard as writing the program
in the first place [20]), debug, and modify [2, 21]. Yet, with-
out easier ways to provide network specifications, network
verification and synthesis are unlikely to get widely deployed.

Config2Spec We introduce Config2Spec, a system that auto-
matically mines a network’s specification from its configura-
tions and a failure model (e.g., up to k failures). Config2Spec
is precise: it returns all policies that hold under the failure
model (no false negatives) and only those (no false positives).

Challenges Mining precise network specifications is chal-
lenging as it involves exploring two exponential search spaces:
(i) the space of all possible policies, and (ii) the space of
all possible network-wide forwarding states. The challenge
stems from the fact that individually exploring each of the
search spaces can be prohibitive: a search for the true policies
is hard since they are a small fraction of the policy space,
while a search for the violated policies is hard since these
require witnesses (data planes), which are often sparse.

Insights Config2Spec addresses the above challenges by com-
bining the strengths of data plane analysis and control plane
verification. Data plane analysis enables us to compute the set
of policies that hold for a single data plane, thereby providing
an efficient way of pruning policies. On the other hand, con-
trol plane verification is an efficient way of validating that a
single policy holds for all the data planes. Config2Spec com-
bines the two approaches to prune the large space of policies
through sampling and data plane analysis and then, to avoid
the need of exploring all data planes, validating the remain-
ing policies with control plane verification. The key insight
is to dynamically identify the approach providing for better
progress. We design predictors which rely on past iterations
and the failure model to switch between the two approaches.

USENIX NSDI 2020 Read online

(Probabilistic) Network verification relies on two key

assumptions. First, that you know the properties

you want to verify. Second, that you can write them

down formally. In practice, both assumptions tend

to be false. In this paper, we describe a system

(Config2Spec) that can automatically mine these

properties out from existing network configurations.

Besides reading the paper, you can also learn more

about the topic by checking this recent blogpost.

Metha: Network Verifiers Need To Be Correct Too!

Rüdiger Birkner*, Tobias Brodmann*, Petar Tsankov, Laurent Vanbever, Martin Vechev
ETH Zürich

Abstract
Network analysis and verification tools are often a godsend

for network operators as they free them from the fear of in-
troducing outages or security breaches. As with any complex
software though, these tools can (and often do) have bugs. For
the operators, these bugs are not necessarily problematic ex-
cept if they affect the precision of the network model. In that
case, the tool output might be wrong: it might fail to detect
actual configuration errors and/or report non-existing ones.

In this paper, we present Metha, a framework that sys-
tematically tests network analysis and verification tools for
bugs in their network models. Metha automatically generates
syntactically- and semantically-valid configurations; com-
pares the tool’s output to that of the actual router software;
and detects any discrepancy as a bug in the tool’s model. The
challenge in testing network analyzers this way is that a bug
may occur very rarely and only when a specific set of config-
uration statements is present. We address this challenge by
leveraging grammar-based fuzzing together with combinato-
rial testing to ensure thorough coverage of the search space
and by identifying the minimal set of statements triggering
the bug through delta debugging.

We fully implemented Metha and used it to test three well-
known tools. In all of them, we found multiple (new) bugs in
their models, most of which were confirmed by the developers
themselves.

1 Introduction

It’s Friday night and you are about to push an important
(network) configuration update in production. Usually, you
would feel terribly nervous doing so as there is always the
possibility that you may have missed something. You are only
too aware that misconfigurations happen frequently and can
lead to major network outages [15,17,20]. Tonight though you
feel confident when pressing “deploy” as you have confirmed
the correctness of your configuration update using a state-of-
the-art configuration verifier. A few minutes later, your phone
rings: none of your customers can reach the Internet anymore.

This fictitious situation illustrates an intrinsic problem with
verification technologies: their results can only be completely
trusted if their analysis is sound and complete. As with any
complex software though, these tools can (and often do) have
bugs. To be fair, this is not surprising: building an accurate and
faithful network analysis tool is extremely difficult. Among
others, one not only has to precisely capture all the different
protocols’ behaviors, but also all of the quirks of their spe-
cific implementations. Unfortunately, every vendor, every OS,
every device can exhibit slightly different behaviors under
certain conditions. For all it takes, these behaviors might be
the results of bugs themselves. And yet, failing to accurately
capture these behaviors—as we show—can lead to incorrect
and possibly misleading analysis results.

A fundamental and yet practical research question is there-
fore: How can developers make sure that their network analy-
sis and verification tools are correct?
Metha We introduce Metha, a system that thoroughly tests
network analysis and verification tools to find subtle bugs
in their network models using black-box differential testing.
Metha automatically finds model discrepancies by generating
input configurations and comparing the output of the tool un-
der test with the output produced by the actual router software.
For every discovered discrepancy, Metha provides a minimal
configuration that helps developers pinpoint the bug. Later
on, these configurations can be used to build up an adequate
test suite for current and future network tools.
Challenges Precisely identifying bugs in network analyzers
models is challenging for at least three reasons. First, the
search space of possible configurations is gigantic: there are
hundreds of configuration statements, each of which can take
many possible parameters. And yet, as our analysis reveal,
most of the bugs only manifest themselves when specific
configuration statements/values are present. Second, system-
atically exploring the search space is highly non-trivial (in-
dependently of its size) as one not only needs to generate
syntactically-valid configurations, but also semantically-valid
ones that involve all features and their interactions. Failing
to do so could lead to miss bugs, hence lowering coverage.

1

USENIX NSDI 2021 Coming soon

Continuing our quest to make network verification

practical, we then turned our attention to verifying

the network verifiers. Buggy verifiers might indeed

fail to report actual configuration errors or report

non-existing ones. In this paper, we introduce

a framework to systematically test such network

verifiers. Using our framework, we were able to find

over 60 bugs in popular verification software, most

of which were confirmed by the developers.

https://nsg.ee.ethz.ch/fileadmin/user_upload/publications/netdice-cameraready-sigcomm20.pdf
https://nsg.ee.ethz.ch/fileadmin/user_upload/publications/config2spec-final.pdf
https://netverify.fun/you-cant-verify-what-you-cant-specify/

Network programmability

SP-PIFO: Approximating Push-In First-Out Behaviors
using Strict-Priority Queues

Albert Gran Alcoz
ETH Zürich

Alexander Dietmüller
ETH Zürich

Laurent Vanbever
ETH Zürich

Abstract
Push-In First-Out (PIFO) queues are hardware primitives

which enable programmable packet scheduling by providing
the abstraction of a priority queue at line rate. However, imple-
menting them at scale is not easy: just hardware designs (not
implementations) exist, which support only about 1k flows.

In this paper, we introduce SP-PIFO, a programmable
packet scheduler which closely approximates the behavior
of PIFO queues using strict-priority queues—at line rate, at
scale, and on existing devices. The key insight behind SP-
PIFO is to dynamically adapt the mapping between packet
ranks and available strict-priority queues to minimize the
scheduling errors with respect to an ideal PIFO. We present
a mathematical formulation of the problem and derive an
adaptation technique which closely approximates the optimal
queue mapping without any traffic knowledge.

We fully implement SP-PIFO in P4 and evaluate it on real
workloads. We show that SP-PIFO: (i) closely matches PIFO,
with as little as 8 priority queues; (ii) scales to large amount of
flows and ranks; and (iii) quickly adapts to traffic variations.
We also show that SP-PIFO runs at line rate on existing hard-
ware (Barefoot Tofino), with a negligible memory footprint.

1 Introduction

Until recently, packet scheduling was one of the last bastions
standing in the way of complete data-plane programmability.
Indeed, unlike forwarding whose behavior can be adapted
thanks to languages such as P4 [7] and reprogrammable hard-
ware [2], scheduling behavior is mostly set in stone with
hardware implementations that can, at best, be configured.

To enable programmable packet scheduling, the main chal-
lenge was to find an appropriate abstraction which is flexible
enough to express a wide variety of scheduling algorithms and
yet can be implemented efficiently in hardware [22]. In [23],
Sivaraman et al. proposed to use Push-In First-Out (PIFO)
queues as such an abstraction. PIFO queues allow enqueued
packets to be pushed in arbitrary positions (according to the
packets rank) while being drained from the head.

Incoming packets sequence

already enqueued

341452

PIFO queue (theoretical)

1234452 123445

SP-PIFO (approximation)

445

312

suboptimal output

strategy A

[1–3]

[4–5]
312445

2

3445

12

strategy B

[1–2]

[3–5]

2
123445

optimal output

Figure 1: SP-PIFO approximates the behavior of PIFO queues
by adapting how packet ranks are mapped to priority queues.

While PIFO queues enable programmable scheduling, im-
plementing them in hardware is hard due to the need to ar-
bitrarily sort packets at line rate. [23] described a possible
hardware design (not implementation) supporting PIFO on
top of Broadcom Trident II [1]. While promising, realizing
this design in an ASIC is likely to take years [6], not includ-
ing deployment. Even ignoring deployment considerations,
the design of [23] is limited as it only supports ~1000 flows
and relies on the assumption that the packet ranks increase
monotonically within each flow, which is not always the case.

Our work In this paper, we ask whether it is possible to ap-
proximate PIFO queues at scale, in existing programmable
data planes. We answer positively and present SP-PIFO,
an adaptive scheduling algorithm that closely approximates
PIFO behaviors on top of widely-available Strict-Priority (SP)
queues. The key insight behind SP-PIFO is to dynamically
adapt the mapping between packet ranks and SP queues in
order to minimize the amount of scheduling mistakes relative
to a hypothetical ideal PIFO implementation.

USENIX NSDI 2020 Read online

Packet scheduling is one of the last bastions standing

in the way of complete data-plane programmability.

Even recent programmable switches do not allow

operators to reprogram their scheduling behaviors.

In this paper, we enable programmable packet

scheduling in existing hardware switches by

approximating the behavior of Push-In First-Out

(PIFO) queues. We do so by dynamically adapting

how packets are mapped to strict-priority queues.

P2GO: P4 Profile-Guided Optimizations
Patrick Wintermeyer

ETH Zürich
patricwi@ethz.ch

Maria Apostolaki
ETH Zürich

apmaria@ethz.ch

Alexander Dietmüller
ETH Zürich

adietmue@ethz.ch

Laurent Vanbever
ETH Zürich

lvanbever@ethz.ch

ABSTRACT
Programmable devices allow the operator to specify the data-plane
behavior of a network device in a high-level language such as P4.
The compiler then maps the P4 program to the hardware after apply-
ing a set of optimizations to minimize resource utilization. Yet, the
lack of context restricts the compiler to conservatively account for
all possible inputs – including unrealistic or infrequent ones – lead-
ing to sub-optimal use of the resources or even compilation failures.
To address this inefficiency, we propose that the compiler leverages
insights from actual traffic traces, effectively unlocking a broader
spectrum of possible optimizations. We present a system working
alongside the compiler that uses traffic-awareness to reduce the
allocated resources of a P4 program by: (i) removing dependencies
that do not manifest; (ii) adjusting table and register sizes to reduce
the pipeline length; and (iii) offloading parts of the program that
are rarely used to the controller. Our prototype implementation on
the Tofino switch automatically profiles the P4 program, detects
opportunities and performs optimizations to improve the pipeline
efficiency. Our work showcases the potential benefit of applying
profiling techniques used to compile general-purpose languages to
compiling P4 programs.
ACM Reference Format:
Patrick Wintermeyer, Maria Apostolaki, Alexander Dietmüller, and Laurent
Vanbever. 2020. P2GO: P4 Profile-Guided Optimizations. In Proceedings of
the 19th ACM Workshop on Hot Topics in Networks (HotNets ’20), November
4–6, 2020, Virtual Event, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3422604.3425941

1 INTRODUCTION
Thanks to programmable data planes, network programmers can
now define the forwarding behavior of their switches using pro-
gramming languages such as P4 [14]. To ensure portability across
platforms, these languages abstract away many hardware details
and rely on a compiler to “map” programs to the available hard-
ware resources. Typical hardware resources include the number of
processing stages, the amount of memory available in each stage,
as well as the number of operations available per packet. Compiling
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotNets ’20, November 4–6, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8145-1/20/11. . . $15.00
https://doi.org/10.1145/3422604.3425941

a P4 program so that “it fits” the particularly tight resource budget
of typical switches [24] is a challenging problem that existing P4
compilers approach with various optimizations techniques [18].

While useful, existing compiler optimizations are also inherently
limited in that they cannot reason about runtime information, as
they only have access to the source code. Among others, this forces
them to conservatively account for all possible inputs – including
unrealistic and infrequent ones – leading to sub-optimal use of the
resources or even compilation failures. In particular, the network
traffic can be such that some parts of a P4 program might be seldom
executed while occupying a significant amount of the allocated
resources. Clearly, knowing such an execution profile would enable
further compilation optimizations, e.g., allowing to save stages or
to reduce memory consumption. Such profile-guided optimizations
are well-known in general-purpose programming languages and
are available in many production-grade compilers (e.g., PGO in
Clang [3], BOLT [23], Propeller [7]).

Profile-guided optimization×programmable data planes We
argue that profile-guided optimization should also be applied to
programmable data planes and introduce P2GO. Using runtime
information, P2GO automatically optimizes a P4 program so that it
requires fewer resources. More specifically, given a (representative)
packet trace and a set of forwarding rules, P2GO profiles the P4 pro-
gram by observing the execution path taken by each packet. P2GO
then uses this profiling information to adapt the P4 program such
that it uses strictly fewer hardware resources after compilation.

Despite being intuitive, we believe profile-guided optimizations
open up a rich research agenda for our community. This agenda
includes research questions such as: How to compute representative
execution profiles? Which optimization techniques bring the most
benefits? How do we optimize multiple resources simultaneously?
Should we allow possibly unsafe optimizations that may change the
program’s semantics? How do we deal with changes in the profile?

We start to answer these questions by optimizing “only” one re-
source, albeit a fundamental and often limiting one: the number of
pipeline stages. We introduce three profile-guided optimizations to
reduce the number of stages, all of which go beyond the capabilities
of available P4 compilers. In particular, we first show that profiling
can help uncover “fake dependencies”, i.e., dependencies that are
reported by static analysis but do not manifest in practice. We then
show that profiling can find opportunities for memory optimiza-
tions while verifying that they do not change the overall behavior
of the P4 program. We finally show that profiling can uncover code
segments that are barely used but consume significant resources.
Such segments are good candidates to be offloaded to software.

ACM HotNets 2020 Read online

If you have ever programmed a hardware-based

programmable switch, you know that its resources

are limited and come at a huge premium. And yet,

it might be that your network traffic is such that

your switch only use a small portion of its precious

resources. In this paper, we show how making

the compiler traffic-aware enables it to allocate

resources in a smarter way—think profile-guided

optimizations for programmable data planes.

P4-learning repository Browse online

Early 2020 we decided to release all the materials

we used for our master lecture “Advanced Topics

in Communication Networks” including: our lecture

slides, a set of comprehensive P4 examples,

documented P4 exercises (with solutions), and a

complete production environment (P4-utils) which

makes it easy to build, run, and debug P4 networks.

Since then many people have started to use/build

upon our ressources. Why don’t you take a look?

https://nsg.ee.ethz.ch/fileadmin/user_upload/SP-PIFO.pdf
https://nsg.ee.ethz.ch/fileadmin/user_upload/hotnets2020_cameraready_20201006.pdf
https://github.com/nsg-ethz/p4-learning/
https://github.com/nsg-ethz/p4-learning/

Internet routing

xBGP: When You Can’t Wait for the IETF and Vendors
Thomas Wirtgen
ICTEAM, UCLouvain

Louvain-la-Neuve, Belgium
thomas.wirtgen@uclouvain.be

Quentin De Coninck∗

ICTEAM, UCLouvain
Louvain-la-Neuve, Belgium

quentin.deconinck@uclouvain.be

Randy Bush
IIJ Research & Arrcus

Bainbridge Island, WA, USA
randy@psg.com

Laurent Vanbever
NSG, ETH Zürich

Zürich, Switzerland
lvanbever@ethz.ch

Olivier Bonaventure
ICTEAM, UCLouvain

Louvain-la-Neuve, Belgium
olivier.bonaventure@uclouvain.be

ABSTRACT
Thanks to the standardization of routing protocols such as BGP,
OSPF or IS-IS, Internet Service Providers (ISP) and enterprise net-
works can deploy routers from various vendors. This prevents them
from vendor-lockin problems. Unfortunately, this also slows innova-
tion since any new feature must be standardized and implemented
by all vendors before being deployed.

We propose a paradigm shift that enables network operators to
program the routing protocols used in their networks. We demon-
strate the feasibility of this approach with xBGP. xBGP is a vendor
neutral API that exposes the key data structures and functions of
any BGP implementation. Each xBGP compliant implementation
includes an eBPF virtual machine that executes the operator sup-
plied programs. We extend FRRouting and BIRD to support this
new paradigm and demonstrate the flexibility of xBGP with four
different use cases. Finally, we discuss how xBGP could affect future
research on future routing protocols.

CCS CONCEPTS
• Networks → Network protocol design; Routing protocols; Pro-
gramming interfaces; Programmable networks.

KEYWORDS
BGP; Routing; Network architecture; eBPF

ACM Reference Format:
Thomas Wirtgen, Quentin De Coninck, Randy Bush, Laurent Vanbever,
and Olivier Bonaventure. 2020. xBGP: When You Can’t Wait for the IETF
and Vendors. In Proceedings of the 19th ACM Workshop on Hot Topics in
Networks (HotNets ’20), November 4–6, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3422604.3425952

∗Quentin De Coninck is a F.R.S.-FNRS Postdoctoral researcher.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotNets ’20, November 4–6, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8145-1/20/11. . . $15.00
https://doi.org/10.1145/3422604.3425952

1 INTRODUCTION
Put yourself in the shoes of a mobile application developer who
needs to support all mobile platforms. Your application would
clearly benefit from being able to seamlessly switch from Wi-Fi to
cellular without impacting the established TCP connections. Multi-
path TCP [14] supports such handovers, but you don’t have the lux-
ury to wait until its adoption by all smartphone vendors1. Instead,
you will likely resort to integrate a QUIC library in your software
to benefit from its connection migration capabilities [23, 25].

Contrast this situation with the one of network operators whose
networks could really benefit from new network-level features
such as improved traffic engineering protocols [1], faster conver-
gence mechanisms [36], or improved DDoS protection [34]. Like
our programmer, network operators run highly heterogeneous en-
vironments, composed of a wide variety of devices types (routers,
switches, middle boxes), coming from distinct vendors, and running
distinct operating systems. This heterogeneity is actually necessary,
not only to avoid vendor lock-in [9], but also for increased reliability
(bugs or vulnerabilities tend not to affect all OSes at once).

Unlike our programmer, though, network operators often need
the entire network to support the features (not only the endpoints)
and, as such, have no alternative but to wait for the required features
to be: (𝑖) standardized by the IETF; (𝑖𝑖) implemented by all vendors;
(𝑖𝑖𝑖) widely tested; and (𝑖𝑣) widely deployed in their network. The
standardization process alone often takes years. As an illustration,
Fig. 1 depicts the delay between the moment the IETF working
group responsible for the BGP routing protocol (IDR) started to
work on a new feature and its actual RFC publication. This delay
includes the time required to document two independent and inter-
operable implementations as required by the IETF working group.
We see that the median delay before RFC publication is 3.5 years,
and that some features required up to ten years before being stan-
dardized. Even worse, this delay ignores the time elapsed between
the initial idea and its first adoption by the working group.

Of course, this is not a new story. Frustrated by these delays
and the difficulty to innovate in networks, researchers have argued
for Software-Defined Networks (SDN) [30] for more than a decade.
Instead of relying on a myriad of distributed protocols and features,
SDN assumes that switches and routers expose their forwarding
tables through a standardized API. This API is then used by logically
centralized controllers to “program” routers and switches.
1Multipath TCP is supported by third-party applications on iOS since 2017. The Multi-
path TCP implementation in the Linux kernel is not yet integrated in the mainline
kernel and thus not yet adopted by all Android smartphones.

ACM HotNets 2020 Read online

If you are a network operator, you are most likely

frustrated by the slowness at which you can deploy

new features in your network. It can literally take

years between an initial idea and its corresponding

standardization by the Internet Engineering Task

Force (IETF). And while SDN promises to solve this

problem, it is not a panacea either. In this paper, we

propose a lightweight alternative with an API that

allows to (easily) reprogram routing protocols logic.

An Open Platform to Teach How the Internet Practically Works
mini-inter.net

Thomas Holterbach
ETH Zurich

thomahol@ethz.ch

Tobias Bühler
ETH Zurich

buehlert@ethz.ch

Tino Rellstab
ETH Zurich

tinor@student.ethz.ch

Laurent Vanbever
ETH Zurich

lvanbever@ethz.ch

ABSTRACT
Each year at ETH Zurich, around 100 students collectively build
and operate their very own Internet infrastructure composed of
hundreds of routers and dozens of Autonomous Systems (ASes).
Their goal? Enabling Internet-wide connectivity.

We find this class-wide project to be invaluable in teaching our
students how the Internet infrastructure practically works. Among
others, our students have a much deeper understanding of Internet
operations alongside their pitfalls. Besides students tend to love the
project: clearly the fact that all of them need to cooperate for the
entire Internet to work is empowering.

In this paper, we describe the overall design of our teaching
platform, how we use it, and interesting lessons we have learnt
over the years. We also make our platform openly available [2].

CCS CONCEPTS
• Networks → Network design principles; Network proto-
cols; Public Internet;

1 INTRODUCTION
Most undergraduate networking courses, including ours [25], aim
at teaching “how the Internet works”. For the instructor, this typi-
cally means painstakingly going through the TCP/IP protocol stack,
one layer at a time, following a bottom-up [19] or top-down ap-
proach [13]. At the end of the lecture, students (hopefully) have
learnt concepts such as switching, routing, and reliable transport;
together with the corresponding protocols.

Learning these concepts is not sufficient to understand how
the Internet infrastructure works or, alternatively, why it does not
work. For this, we think one also needs to understand the ins and
outs of how the Internet is operated which includes topics such as
network design, network configuration, network monitoring, and. . .
network debugging. Understanding these topics is important as
Internet operations tend to have a huge impact. Among others, most
of the Internet downtimes are due to human-induced errors [18].

We argue that an effective way to teach students about Internet
operations—one that we have successfully used for the last four
years—is simply to let students operate their own mini-Internet.
Turning students into operators. Each year, for the last four
years, around 100 ETH students have built, configured, and mon-
itored an actual Internet infrastructure composed of hundreds of
routers split across 60 Autonomous Systems (ASes). Each group of
2–3 students is responsible for administering, from scratch, one AS
composed of multiple hosts, layer-2 switches and layer-3 routers.
Each network “peers” with others using BGP, either directly or
through Internet eXchange Points (IXPs), which we (the instruc-
tors) maintain. The students’ goal is identical to the ones of actual
operators: enabling Internet-wide connectivity, between any pair of

IP prefixes, by transiting IP traffic across multiple student networks.
As they quickly realize though, achieving this goal is challenging
and requires a truly collective effort. We found this to be empower-
ing. The fact that all networks need to work for the Internet as a
whole to work really helps to bring together the entire classroom.

Over the years, the mini-Internet project has become a flagship
piece of our networking lecture, one that the new students look
forward to. Thus far, the feedback we received from the students has
been extremely positive, with comments such as: "It really allows us
to apply the theoretical concepts"; "I am quite confident about many
things on the Internet now"; and "It is a unique project".

Besides gaining a much deeper understanding of the various In-
ternet mechanisms, having students build and maintain their own
Internet infrastructure enables them to quickly realize the pitfalls
and shortcomings behind Internet operations. Students quickly real-
ize: (i) how fragile the Internet infrastructure is and how dependent
they are on their neighbors’ connectivity; (ii) how hard it is to trou-
bleshoot Internet-wide problems; and (iii) how difficult it is to co-
ordinate with each other to fix remote problems. Each year, several
groups of students come up with proposals (sometimes, even imple-
mentations!) to improve Internet operations. These proposals often
directly relate to research topics active in our community (such
as configuration verification/synthesis or active probing). Perhaps
candidly, we believe that encountering operational problems early
on in their networking curriculum can help the next-generation of
network designers avoid repeating the mistakes made in the past.
An open platform. Given the success of our project, we have open
sourced the entire platform [2] and hope that other institutions will
start using it. We built our platform with three key goals in mind.

First, we aimed at faithfully emulating the real Internet infras-
tructure. To do so, we rely on (open-source) switching and routing
software implementing the most well-known protocols (e.g., STP,
OSPF, BGP). We also rely on virtualization (containers) to inter-
connect many instances (100+) of these software. While relying on
virtualization in network education is not new (e.g., [3, 5, 6, 14, 22]),
our setting is unique as it is entirely designed to support and facili-
tate large and collectively-operated routing infrastructures.

Second, while we wanted the students to learn the intricacies of
Internet operations, we also wanted to avoid making it too daunting
for them. In particular, our students only have four weeks to build
the entire mini-Internet. To help them, we developed a suite of
troubleshooting tools such as a perfect “looking glass” which allows
them to see the routing information of any network, together with
a real-time visualization of the overall Internet connectivity.

Third, we wanted the setup to be easy to manage for us (the in-
structors), flexible (so that we can adapt it each year), cost-effective
and scalable (to 100+ students). We therefore automated the en-
tire provisioning: it takes only a few hours to create and launch a

ACM SIGCOMM CCR 2020 Read online

3

A key element of our “Communication Networks”

lecture is our routing project in which we have the

entire classroom (150 students in 2020) build and

operate their very own “mini-Internet”. We have

found that students not only love the project but

also learn a ton from it. In this paper, we describe

our experiences and the platform we built to support

class-wide assignments. We have open-sourced all

our resources. Check them out: www.mini-inter.net

Securing Internet Applications from Routing Attacks

Yixin Sun
University of Virginia

Maria Apostolaki
ETH Zurich

Henry Birge-Lee
Princeton University

Laurent Vanbever
ETH Zurich

Jennifer Rexford
Princeton University

Mung Chiang
Purdue University

Prateek Mittal
Princeton University

ABSTRACT
Attacks on Internet routing are typically viewed through

the lens of availability and confidentiality, assuming an ad-
versary that either discards traffic or performs eavesdrop-
ping. Yet, a strategic adversary can use routing attacks to
compromise the security of critical Internet applications like
Tor, certificate authorities, and the bitcoin network.

In this paper, we survey such application-specific routing
attacks and argue that both application-layer and network-
layer defenses are essential and urgently needed. The good
news is that, while deployment challenges have hindered the
adoption of network-layer defenses (i.e. secure routing pro-
tocols) thus far, application-layer defenses are much easier
to deploy in the short term.

1. INTRODUCTION
The Internet is a “network of networks” that interconnects

tens of thousands of separately administered networks. The
Border Gateway Protocol (BGP) is the glue that holds the
Internet together by propagating information about how to
reach destinations in remote networks. However, BGP is
notoriously vulnerable to misconfiguration and attack. The
consequences range from making destinations unreachable
(e.g., Google’s routing incident caused widespread Internet
outage in Japan [7]), to misdirecting traffic through unex-
pected intermediaries (e.g., European mobile traffic routed
through China Telecom due to improper routing announce-
ments from a Swiss datacenter [9]), to impersonating le-
gitimate services (e.g., traffic to an Amazon DNS server
rerouted to attackers who answered DNS queries with fraud-
ulent IP addresses [8]). Efforts to secure the Internet routing
system have been underway for many years [20–22,26,28,29],
but the pace of progress is slow since many parties must
agree on solutions and cooperate in their deployment.

In the meantime, more and more users rely on the Inter-
net to access a wide range of services, including applications
with security and privacy concerns of their own. Applica-
tions such as Tor (the onion router) allow users to browse
anonymously, certificate authorities provide certificates for
secure access to web services, and blockchain supports se-
cure cryptocurrencies. However, the privacy and security
properties of these applications depend on the network to
deliver traffic; Figure 1 illustrates the cross-layer interaction
between Tor and the underlying network. Application de-
velopers abstract away the details of Internet routing, but
BGP does not provide a sufficiently secure scaffolding for
these applications. This gap leaves the vulnerabilities due to
routing insecurity significantly underestimated. Tradition-

Figure 1: BGP routing affects who can observe Tor traffic.

ally, routing attacks have been viewed primarily as causing
availability problems (when misdirected traffic is dropped)
and affecting confidentiality (when data is not encrypted).
However, routing attacks on Internet applications can have
even more devastating consequences for users—including un-
covering users (such as political dissidents) trying to com-
municate anonymously, impersonating websites even if the
traffic uses HTTPS, and stealing cryptocurrency.

The paper argues that the security of Internet applica-
tions and the network infrastructure should be considered
together, as vulnerabilities in one layer lead to broken as-
sumptions (and new vectors for attacks) in the other. We
first give an overview of Internet routing security, review-
ing BGP, possible attacks, and proposed defenses. Then,
we discuss how cross-layer interactions enable routing at-
tacks to compromise popular applications like Tor, certifi-
cate authorities, and the bitcoin network. Given the slow
adoption of secure routing defenses, we then discuss how
application-specific defenses can be used in the near-term
to mitigate routing attacks without requiring global coordi-
nation. We believe that application-layer and network-layer
solutions are interconnected and both are essential to secure
Internet applications. Furthermore, by demonstrating the
disastrous consequences for users, we hope to motivate the
community to redouble efforts to tackle BGP’s many secu-
rity problems once and for all.

2. ROUTING ATTACKS
Routing attacks occur in the wild, and are getting in-

creasingly prevalent and more sophisticated. An attacker
can launch carefully-crafted attacks to achieve desired goals,

Communications of the ACM Read online

It is notoriously known that Internet routing is

vulnerable to misconfigurations and attacks. And

while efforts to secure the Internet are underway,

the pace of progress has been (frustratingly) slow.

In this paper, we survey how routing attacks can also

compromise the security of critical applications like

Tor, certificate authorities, or the bitcoin network.

The good news though? Protecting an application is

much easier than protecting the entire Internet.

https://nsg.ee.ethz.ch/fileadmin/user_upload/publications/hotnet023-wirtgenA.pdf
https://nsg.ee.ethz.ch/fileadmin/user_upload/publications/ccr_paper_2020.pdf
http://mini-inter.net
https://nsg.ee.ethz.ch/fileadmin/user_upload/publications/2004.09063.pdf

Looking forward to see you in 2021!

Our upcoming lectures

Spring Communication Networks

Seminar in Communication Networks

Fall Advanced Topics in Communication Networks

Discrete Event Systems

Our upcoming PhD graduations

Spring Maria Apostolaki

Thomas Holterbach

Fall Rüdiger Birkner

Our incoming PhD students

Spring Tibor Schneider

You?

Zurich, Mon 11 Jan 2021

Visit our webpage at https://nsg.ee.ethz.ch

https://comm-net.ethz.ch/
https://seminar-net.ethz.ch/
https://adv-net.ethz.ch/
https://disco.ethz.ch/courses/des/
https://nsg.ee.ethz.ch/people/maria-apostolaki/
https://nsg.ee.ethz.ch/people/thomas-holterbach/
https://nsg.ee.ethz.ch/people/ruediger-birkner/
https://nsg.ee.ethz.ch

